mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 18:09:11 +08:00
089a835c0a
used random images in gpu filter tests
803 lines
28 KiB
C++
803 lines
28 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace {
|
|
|
|
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
|
{
|
|
const double maxPtDif = 1.0;
|
|
const double maxSizeDif = 1.0;
|
|
const double maxAngleDif = 2.0;
|
|
const double maxResponseDif = 0.1;
|
|
|
|
double dist = cv::norm(p1.pt - p2.pt);
|
|
|
|
if (dist < maxPtDif &&
|
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
|
abs(p1.response - p2.response) < maxResponseDif &&
|
|
p1.octave == p2.octave &&
|
|
p1.class_id == p2.class_id)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
|
|
{
|
|
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
|
|
{
|
|
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
|
|
}
|
|
};
|
|
|
|
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
|
{
|
|
if (gold.size() != actual.size())
|
|
{
|
|
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
|
|
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
|
|
<< "\"" << actual_expr << "\" : " << actual.size();
|
|
}
|
|
|
|
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
|
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
|
|
|
for (size_t i = 0; i < gold.size(); ++i)
|
|
{
|
|
const cv::KeyPoint& p1 = gold[i];
|
|
const cv::KeyPoint& p2 = actual[i];
|
|
|
|
if (!keyPointsEquals(p1, p2))
|
|
{
|
|
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
|
|
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
|
|
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
|
|
<< "size : " << p1.size << " vs " << p2.size << "\n"
|
|
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
|
|
<< "response : " << p1.response << " vs " << p2.response << "\n"
|
|
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
|
|
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
|
|
}
|
|
}
|
|
|
|
return ::testing::AssertionSuccess();
|
|
}
|
|
|
|
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
|
|
|
|
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
|
{
|
|
int validCount = 0;
|
|
|
|
for (size_t i = 0; i < matches.size(); ++i)
|
|
{
|
|
const cv::DMatch& m = matches[i];
|
|
|
|
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
|
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
|
|
|
if (keyPointsEquals(p1, p2))
|
|
++validCount;
|
|
}
|
|
|
|
return validCount;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// SURF
|
|
|
|
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
|
|
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
|
|
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
|
|
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
|
|
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
|
|
|
|
PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
double hessianThreshold;
|
|
int nOctaves;
|
|
int nOctaveLayers;
|
|
bool extended;
|
|
bool upright;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
hessianThreshold = GET_PARAM(1);
|
|
nOctaves = GET_PARAM(2);
|
|
nOctaveLayers = GET_PARAM(3);
|
|
extended = GET_PARAM(4);
|
|
upright = GET_PARAM(5);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(SURF, Detector)
|
|
{
|
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::gpu::SURF_GPU surf;
|
|
surf.hessianThreshold = hessianThreshold;
|
|
surf.nOctaves = nOctaves;
|
|
surf.nOctaveLayers = nOctaveLayers;
|
|
surf.extended = extended;
|
|
surf.upright = upright;
|
|
surf.keypointsRatio = 0.05f;
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
surf(loadMat(image), cv::gpu::GpuMat(), keypoints);
|
|
|
|
cv::SURF surf_gold;
|
|
surf_gold.hessianThreshold = hessianThreshold;
|
|
surf_gold.nOctaves = nOctaves;
|
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
|
surf_gold.extended = extended;
|
|
surf_gold.upright = upright;
|
|
|
|
std::vector<cv::KeyPoint> keypoints_gold;
|
|
surf_gold(image, cv::noArray(), keypoints_gold);
|
|
|
|
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
|
|
}
|
|
|
|
TEST_P(SURF, Detector_Masked)
|
|
{
|
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
|
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::SURF_GPU surf;
|
|
surf.hessianThreshold = hessianThreshold;
|
|
surf.nOctaves = nOctaves;
|
|
surf.nOctaveLayers = nOctaveLayers;
|
|
surf.extended = extended;
|
|
surf.upright = upright;
|
|
surf.keypointsRatio = 0.05f;
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
surf(loadMat(image), loadMat(mask), keypoints);
|
|
|
|
cv::SURF surf_gold;
|
|
surf_gold.hessianThreshold = hessianThreshold;
|
|
surf_gold.nOctaves = nOctaves;
|
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
|
surf_gold.extended = extended;
|
|
surf_gold.upright = upright;
|
|
|
|
std::vector<cv::KeyPoint> keypoints_gold;
|
|
surf_gold(image, mask, keypoints_gold);
|
|
|
|
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
|
|
}
|
|
|
|
TEST_P(SURF, Descriptor)
|
|
{
|
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::gpu::SURF_GPU surf;
|
|
surf.hessianThreshold = hessianThreshold;
|
|
surf.nOctaves = nOctaves;
|
|
surf.nOctaveLayers = nOctaveLayers;
|
|
surf.extended = extended;
|
|
surf.upright = upright;
|
|
surf.keypointsRatio = 0.05f;
|
|
|
|
cv::SURF surf_gold;
|
|
surf_gold.hessianThreshold = hessianThreshold;
|
|
surf_gold.nOctaves = nOctaves;
|
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
|
surf_gold.extended = extended;
|
|
surf_gold.upright = upright;
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
surf_gold(image, cv::noArray(), keypoints);
|
|
|
|
cv::gpu::GpuMat descriptors;
|
|
surf(loadMat(image), cv::gpu::GpuMat(), keypoints, descriptors, true);
|
|
|
|
cv::Mat descriptors_gold;
|
|
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
|
|
|
|
cv::BFMatcher matcher(cv::NORM_L2);
|
|
std::vector<cv::DMatch> matches;
|
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
|
|
|
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
|
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
|
|
|
EXPECT_GT(matchedRatio, 0.35);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(SURF_HessianThreshold(100.0), SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)),
|
|
testing::Values(SURF_Octaves(3), SURF_Octaves(4)),
|
|
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)),
|
|
testing::Values(SURF_Extended(false), SURF_Extended(true)),
|
|
testing::Values(SURF_Upright(false), SURF_Upright(true))));
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// FAST
|
|
|
|
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
|
|
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
|
|
|
|
PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
int threshold;
|
|
bool nonmaxSupression;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
threshold = GET_PARAM(1);
|
|
nonmaxSupression = GET_PARAM(2);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(FAST, Accuracy)
|
|
{
|
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::gpu::FAST_GPU fast(threshold);
|
|
fast.nonmaxSupression = nonmaxSupression;
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
fast(loadMat(image), cv::gpu::GpuMat(), keypoints);
|
|
|
|
std::vector<cv::KeyPoint> keypoints_gold;
|
|
cv::FAST(image, keypoints_gold, threshold, nonmaxSupression);
|
|
|
|
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, FAST, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(FAST_Threshold(25), FAST_Threshold(50)),
|
|
testing::Values(FAST_NonmaxSupression(false), FAST_NonmaxSupression(true))));
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ORB
|
|
|
|
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
|
|
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
|
|
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
|
|
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
|
|
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
|
|
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
|
|
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
|
|
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
|
|
|
|
CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
|
|
|
|
PARAM_TEST_CASE(ORB, cv::gpu::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
int nFeatures;
|
|
float scaleFactor;
|
|
int nLevels;
|
|
int edgeThreshold;
|
|
int firstLevel;
|
|
int WTA_K;
|
|
int scoreType;
|
|
int patchSize;
|
|
bool blurForDescriptor;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
nFeatures = GET_PARAM(1);
|
|
scaleFactor = GET_PARAM(2);
|
|
nLevels = GET_PARAM(3);
|
|
edgeThreshold = GET_PARAM(4);
|
|
firstLevel = GET_PARAM(5);
|
|
WTA_K = GET_PARAM(6);
|
|
scoreType = GET_PARAM(7);
|
|
patchSize = GET_PARAM(8);
|
|
blurForDescriptor = GET_PARAM(9);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
TEST_P(ORB, Accuracy)
|
|
{
|
|
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
|
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
|
|
|
|
cv::gpu::ORB_GPU orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
|
|
orb.blurForDescriptor = blurForDescriptor;
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
cv::gpu::GpuMat descriptors;
|
|
orb(loadMat(image), loadMat(mask), keypoints, descriptors);
|
|
|
|
cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
|
|
|
|
std::vector<cv::KeyPoint> keypoints_gold;
|
|
cv::Mat descriptors_gold;
|
|
orb_gold(image, mask, keypoints_gold, descriptors_gold);
|
|
|
|
cv::BFMatcher matcher(cv::NORM_HAMMING);
|
|
std::vector<cv::DMatch> matches;
|
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
|
|
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
|
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
|
|
|
EXPECT_GT(matchedRatio, 0.35);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, ORB, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(ORB_FeaturesCount(1000)),
|
|
testing::Values(ORB_ScaleFactor(1.2f)),
|
|
testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
|
|
testing::Values(ORB_EdgeThreshold(31)),
|
|
testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)),
|
|
testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
|
|
testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)),
|
|
testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
|
|
testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// BruteForceMatcher
|
|
|
|
CV_ENUM(DistType, cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist, cv::gpu::BruteForceMatcher_GPU_base::HammingDist)
|
|
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
|
|
|
|
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, DistType, DescriptorSize)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
cv::gpu::BruteForceMatcher_GPU_base::DistType distType;
|
|
int dim;
|
|
|
|
int queryDescCount;
|
|
int countFactor;
|
|
|
|
cv::Mat query, train;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
distType = (cv::gpu::BruteForceMatcher_GPU_base::DistType)(int)GET_PARAM(1);
|
|
dim = GET_PARAM(2);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
queryDescCount = 300; // must be even number because we split train data in some cases in two
|
|
countFactor = 4; // do not change it
|
|
|
|
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
|
|
|
|
cv::Mat queryBuf, trainBuf;
|
|
|
|
// Generate query descriptors randomly.
|
|
// Descriptor vector elements are integer values.
|
|
queryBuf.create(queryDescCount, dim, CV_32SC1);
|
|
rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
|
|
queryBuf.convertTo(queryBuf, CV_32FC1);
|
|
|
|
// Generate train decriptors as follows:
|
|
// copy each query descriptor to train set countFactor times
|
|
// and perturb some one element of the copied descriptors in
|
|
// in ascending order. General boundaries of the perturbation
|
|
// are (0.f, 1.f).
|
|
trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
|
|
float step = 1.f / countFactor;
|
|
for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
|
|
{
|
|
cv::Mat queryDescriptor = queryBuf.row(qIdx);
|
|
for (int c = 0; c < countFactor; c++)
|
|
{
|
|
int tIdx = qIdx * countFactor + c;
|
|
cv::Mat trainDescriptor = trainBuf.row(tIdx);
|
|
queryDescriptor.copyTo(trainDescriptor);
|
|
int elem = rng(dim);
|
|
float diff = rng.uniform(step * c, step * (c + 1));
|
|
trainDescriptor.at<float>(0, elem) += diff;
|
|
}
|
|
}
|
|
|
|
queryBuf.convertTo(query, CV_32F);
|
|
trainBuf.convertTo(train, CV_32F);
|
|
}
|
|
};
|
|
|
|
TEST_P(BruteForceMatcher, Match)
|
|
{
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
std::vector<cv::DMatch> matches;
|
|
matcher.match(loadMat(query), loadMat(train), matches);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
cv::DMatch match = matches[i];
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
|
|
badCount++;
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
|
|
TEST_P(BruteForceMatcher, MatchAdd)
|
|
{
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
cv::gpu::GpuMat d_train(train);
|
|
|
|
// make add() twice to test such case
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
|
|
|
|
// prepare masks (make first nearest match illegal)
|
|
std::vector<cv::gpu::GpuMat> masks(2);
|
|
for (int mi = 0; mi < 2; mi++)
|
|
{
|
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1));
|
|
for (int di = 0; di < queryDescCount/2; di++)
|
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
|
|
}
|
|
|
|
std::vector<cv::DMatch> matches;
|
|
matcher.match(cv::gpu::GpuMat(query), matches, masks);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
int shift = matcher.isMaskSupported() ? 1 : 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
cv::DMatch match = matches[i];
|
|
|
|
if ((int)i < queryDescCount / 2)
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0))
|
|
badCount++;
|
|
}
|
|
else
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1))
|
|
badCount++;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
TEST_P(BruteForceMatcher, KnnMatch2)
|
|
{
|
|
const int knn = 2;
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches;
|
|
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
if ((int)matches[i].size() != knn)
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for (int k = 0; k < knn; k++)
|
|
{
|
|
cv::DMatch match = matches[i][k];
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
|
|
localBadCount++;
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
TEST_P(BruteForceMatcher, KnnMatch3)
|
|
{
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
const int knn = 3;
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches;
|
|
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
if ((int)matches[i].size() != knn)
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for (int k = 0; k < knn; k++)
|
|
{
|
|
cv::DMatch match = matches[i][k];
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
|
|
localBadCount++;
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
TEST_P(BruteForceMatcher, KnnMatchAdd2)
|
|
{
|
|
const int knn = 2;
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
cv::gpu::GpuMat d_train(train);
|
|
|
|
// make add() twice to test such case
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
|
|
|
|
// prepare masks (make first nearest match illegal)
|
|
std::vector<cv::gpu::GpuMat> masks(2);
|
|
for (int mi = 0; mi < 2; mi++ )
|
|
{
|
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
|
|
for (int di = 0; di < queryDescCount / 2; di++)
|
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
|
|
}
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches;
|
|
|
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
int shift = matcher.isMaskSupported() ? 1 : 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
if ((int)matches[i].size() != knn)
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for (int k = 0; k < knn; k++)
|
|
{
|
|
cv::DMatch match = matches[i][k];
|
|
{
|
|
if ((int)i < queryDescCount / 2)
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
|
|
localBadCount++;
|
|
}
|
|
else
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
TEST_P(BruteForceMatcher, KnnMatchAdd3)
|
|
{
|
|
const int knn = 3;
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
cv::gpu::GpuMat d_train(train);
|
|
|
|
// make add() twice to test such case
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
|
|
|
|
// prepare masks (make first nearest match illegal)
|
|
std::vector<cv::gpu::GpuMat> masks(2);
|
|
for (int mi = 0; mi < 2; mi++ )
|
|
{
|
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
|
|
for (int di = 0; di < queryDescCount / 2; di++)
|
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
|
|
}
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches;
|
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
int shift = matcher.isMaskSupported() ? 1 : 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
if ((int)matches[i].size() != knn)
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for (int k = 0; k < knn; k++)
|
|
{
|
|
cv::DMatch match = matches[i][k];
|
|
{
|
|
if ((int)i < queryDescCount / 2)
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
|
|
localBadCount++;
|
|
}
|
|
else
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
TEST_P(BruteForceMatcher, RadiusMatch)
|
|
{
|
|
const float radius = 1.f / countFactor;
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches;
|
|
matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
if ((int)matches[i].size() != 1)
|
|
badCount++;
|
|
else
|
|
{
|
|
cv::DMatch match = matches[i][0];
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
|
|
badCount++;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
TEST_P(BruteForceMatcher, RadiusMatchAdd)
|
|
{
|
|
const int n = 3;
|
|
const float radius = 1.f / countFactor * n;
|
|
|
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
|
|
|
|
cv::gpu::GpuMat d_train(train);
|
|
|
|
// make add() twice to test such case
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
|
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
|
|
|
|
// prepare masks (make first nearest match illegal)
|
|
std::vector<cv::gpu::GpuMat> masks(2);
|
|
for (int mi = 0; mi < 2; mi++)
|
|
{
|
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
|
|
for (int di = 0; di < queryDescCount / 2; di++)
|
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
|
|
}
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches;
|
|
matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius, masks);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
|
|
|
int badCount = 0;
|
|
int shift = matcher.isMaskSupported() ? 1 : 0;
|
|
int needMatchCount = matcher.isMaskSupported() ? n-1 : n;
|
|
for (size_t i = 0; i < matches.size(); i++)
|
|
{
|
|
if ((int)matches[i].size() != needMatchCount)
|
|
badCount++;
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for (int k = 0; k < needMatchCount; k++)
|
|
{
|
|
cv::DMatch match = matches[i][k];
|
|
{
|
|
if ((int)i < queryDescCount / 2)
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
|
|
localBadCount++;
|
|
}
|
|
else
|
|
{
|
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(0, badCount);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(DistType(cv::gpu::BruteForceMatcher_GPU_base::L1Dist), DistType(cv::gpu::BruteForceMatcher_GPU_base::L2Dist)),
|
|
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304))));
|
|
|
|
} // namespace
|