mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
2338 lines
94 KiB
C++
2338 lines
94 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "../op_halide.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_vkcom.hpp"
|
|
|
|
#include "opencv2/core/hal/hal.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
#include <iostream>
|
|
#include <numeric>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
using namespace cv::dnn::ocl4dnn;
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/convolution.hpp"
|
|
#include "../cuda4dnn/primitives/transpose_convolution.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class BaseConvolutionLayerImpl : public ConvolutionLayer
|
|
{
|
|
public:
|
|
bool fusedWeights, fusedBias;
|
|
std::vector<double> weightsMultipliers;
|
|
BaseConvolutionLayerImpl(const LayerParams ¶ms)
|
|
{
|
|
setParamsFrom(params);
|
|
getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode, adjust_pads);
|
|
|
|
numOutput = params.get<int>("num_output");
|
|
int ngroups = params.get<int>("group", 1);
|
|
CV_Assert(numOutput % ngroups == 0);
|
|
|
|
if (kernel_size.size() == 2) {
|
|
kernel = Size(kernel_size[1], kernel_size[0]);
|
|
stride = Size(strides[1], strides[0]);
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
dilation = Size(dilations[1], dilations[0]);
|
|
|
|
adjustPad.height = adjust_pads[0];
|
|
adjustPad.width = adjust_pads[1];
|
|
}
|
|
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
CV_Assert(adjust_pads[i] < strides[i]);
|
|
}
|
|
|
|
fusedWeights = false;
|
|
fusedBias = false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
CV_Assert(inputs.size() > 0);
|
|
|
|
CV_Assert(blobs.size() == 1 || blobs.size() == 2);
|
|
CV_Assert(inputs[0].dims == outputs[0].dims);
|
|
CV_Assert(blobs[0].dims == kernel_size.size() + 2);
|
|
for (int i = 0; i < kernel_size.size(); i++) {
|
|
CV_Assert(blobs[0].size[i + 2] == kernel_size[i]);
|
|
}
|
|
|
|
const Mat &input = inputs[0];
|
|
CV_Assert((input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16S));
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[i].type() == input.type());
|
|
CV_Assert((inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
|
|
for (int j = 0; j < inputs[i].dims; j++) {
|
|
CV_Assert(inputs[i].size[j] == input.size[j]);
|
|
}
|
|
}
|
|
|
|
std::vector<int> inpShape;
|
|
std::vector<int> outShape;
|
|
for (int i = 2; i < inputs[0].dims; i++) {
|
|
inpShape.push_back(inputs[0].size[i]);
|
|
outShape.push_back(outputs[0].size[i]);
|
|
}
|
|
getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end);
|
|
if (pads_begin.size() == 2) {
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
}
|
|
fusedWeights = false;
|
|
fusedBias = false;
|
|
}
|
|
|
|
bool hasBias() const
|
|
{
|
|
return blobs.size() >= 2;
|
|
}
|
|
|
|
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
|
|
bool is1x1() const
|
|
{
|
|
return (kernel.height == 1 && kernel.width == 1) &&
|
|
(stride.height == 1 && stride.width == 1) &&
|
|
(dilation.height == 1 && dilation.width == 1);
|
|
}
|
|
|
|
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
|
{
|
|
Mat w, b;
|
|
top->getScaleShift(w, b);
|
|
if (!w.empty() || !b.empty())
|
|
{
|
|
fuseWeights(w, b);
|
|
fusedWeights = fusedWeights || !w.empty();
|
|
fusedBias = fusedBias || (hasBias() && !w.empty()) || !b.empty();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0;
|
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
|
const std::vector<Mat*> &inputs,
|
|
const std::vector<Mat> &outputs,
|
|
int targetId) const CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
if (targetId != DNN_TARGET_CPU)
|
|
{
|
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
|
|
return;
|
|
}
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
|
|
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
|
|
|
|
int outW, outH, outC, outN;
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
if (outW == 1 || outH <= 2)
|
|
return;
|
|
|
|
if (is1x1() || outC <= 16)
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.fuse(yo, n, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
else
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.split(c, co, ci, 16)
|
|
.fuse(yo, co, tile).fuse(n, tile, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
padded_input.compute_at(top, yi);
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
};
|
|
|
|
|
|
#define IS_POWER_LAYER(layer) \
|
|
(!layer.empty() && !layer->type.compare("Power"))
|
|
//TODO: simultaneously convolution and bias addition for cache optimization
|
|
class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
|
Mat weightsMat;
|
|
std::vector<float> biasvec;
|
|
std::vector<float> reluslope;
|
|
Ptr<ActivationLayer> activ;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
|
|
std::vector<UMat> umat_blobs;
|
|
bool newActiv;
|
|
ocl4dnnFusedActiv_t activType;
|
|
float power;
|
|
#endif
|
|
ConvolutionLayerImpl(const LayerParams ¶ms) : BaseConvolutionLayerImpl(params)
|
|
{
|
|
#ifdef HAVE_OPENCL
|
|
newActiv = false;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
|
power = 0.f;
|
|
#endif
|
|
}
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
|
{
|
|
int dims = inpShape.size();
|
|
int inpD = dims == 5 ? inpShape[2] : 1;
|
|
int inpH = inpShape[dims - 2];
|
|
int inpW = inpShape.back();
|
|
int inpGroupCn = blobs[0].size[1];
|
|
int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
return shape(inpD * inpH * inpW, ksize);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
if (backendId == DNN_BACKEND_CUDA)
|
|
{
|
|
/* only convolution 2d and 3d supported */
|
|
if(kernel_size.size() == 2 || kernel_size.size() == 3)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
if (kernel_size.size() == 3)
|
|
return preferableTarget == DNN_TARGET_CPU;
|
|
return (preferableTarget != DNN_TARGET_MYRIAD || dilation.width == dilation.height);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (kernel_size.size() == 3)
|
|
return (preferableTarget == DNN_TARGET_CPU && backendId == DNN_BACKEND_OPENCV);
|
|
else if (kernel_size.size() == 2)
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_HALIDE ||
|
|
(backendId == DNN_BACKEND_VKCOM && haveVulkan());
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(blobs.size() != 0);
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
|
|
CV_Assert(inputs.size() == (size_t)1);
|
|
|
|
internals.clear();
|
|
|
|
CV_Assert(inputs.size() != 0);
|
|
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
|
|
|
|
int outCn = blobs[0].size[0];
|
|
std::vector<int> outShape;
|
|
outShape.push_back(inputs[0][0]);
|
|
outShape.push_back(outCn);
|
|
|
|
int inpCn = inputs[0][1];
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < inpShape.size(); i++)
|
|
outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
|
|
}
|
|
else
|
|
{
|
|
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
|
|
}
|
|
|
|
int ngroups = inpCn / blobs[0].size[1];
|
|
if (ngroups == 0 || ngroups * blobs[0].size[1] != inpCn)
|
|
CV_Error(Error::StsError, format("Number of input channels should "
|
|
"be multiple of %d but got %d", blobs[0].size[1], inpCn));
|
|
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
|
|
outputs.resize(1, outShape);
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
|
|
|
|
CV_Assert(!blobs.empty());
|
|
const int outCn = blobs[0].size[0];
|
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
|
|
// use vectorized (i.e. with intrinsics) loops without tail processing
|
|
Mat wm = blobs[0].reshape(1, outCn);
|
|
if( wm.step1() % VEC_ALIGN != 0 )
|
|
{
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
Mat wm_buffer = Mat(outCn, newcols, wm.type());
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
|
|
wm.copyTo(wm_aligned);
|
|
wm = wm_aligned;
|
|
}
|
|
weightsMat = wm;
|
|
weightsMultipliers.assign(outCn, 1.0);
|
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
|
|
biasvec.resize(outCn+2);
|
|
if( biasMat.empty() )
|
|
{
|
|
for(int i = 0; i < outCn; i++ )
|
|
biasvec[i] = 0.f;
|
|
}
|
|
else
|
|
{
|
|
for(int i = 0; i < outCn; i++ )
|
|
biasvec[i] = biasMat.at<float>(i);
|
|
}
|
|
#ifdef HAVE_OPENCL
|
|
convolutionOp.release();
|
|
#endif
|
|
}
|
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
|
{
|
|
if (!activ.empty() && !layer.empty())
|
|
return false;
|
|
|
|
activ = layer;
|
|
if (activ.empty())
|
|
reluslope.clear();
|
|
#ifdef HAVE_OPENCL
|
|
newActiv = true;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
|
|
|
if (IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
{
|
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
|
if (!activ_power.empty())
|
|
{
|
|
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
|
|
{
|
|
const int outCh = blobs[0].size[0];
|
|
fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
|
|
Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
|
|
}
|
|
|
|
power = activ_power->power;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
|
|
}
|
|
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
|
|
if (!activ_tanh.empty())
|
|
{
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_TANH;
|
|
}
|
|
}
|
|
#endif
|
|
return !activ.empty();
|
|
}
|
|
|
|
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
|
{
|
|
// Convolution weights have OIHW data layout. Parameters fusion in case of
|
|
// (conv(I) + b1 ) * w + b2
|
|
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
|
|
const int outCn = weightsMat.size[0];
|
|
Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
|
Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
|
CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
|
|
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
|
|
|
|
if (!w.empty())
|
|
{
|
|
// Keep origin weights unchanged.
|
|
if (weightsMat.data == blobs[0].data)
|
|
weightsMat = weightsMat.clone();
|
|
|
|
Mat originWeights = blobs[0].reshape(1, outCn);
|
|
for (int i = 0; i < outCn; ++i)
|
|
{
|
|
double wi = w.at<float>(i);
|
|
weightsMultipliers[i] *= wi;
|
|
cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
|
|
biasvec[i] *= wi;
|
|
}
|
|
}
|
|
|
|
if (!b.empty())
|
|
{
|
|
for (int i = 0; i < outCn; ++i)
|
|
biasvec[i] += b.at<float>(i);
|
|
}
|
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_VULKAN
|
|
int out_channel = blobs[0].size[0];
|
|
bool has_bias = hasBias() || fusedBias;
|
|
int filter_size[2] = {kernel.height, kernel.width};
|
|
int pad_size[2] = {pad.height, pad.width};
|
|
int stride_size[2] = {stride.height, stride.width};
|
|
int dilation_size[2] = {dilation.height, dilation.width};
|
|
int activation = 0;
|
|
vkcom::Tensor input_tensor = VkComTensor(inputs[0]);
|
|
int in_channel = input_tensor.dimSize(1);
|
|
int group = in_channel / blobs[0].size[1];
|
|
|
|
// TODO: support group > 1
|
|
if (group != 1)
|
|
return Ptr<BackendNode>();
|
|
|
|
int padding_mode;
|
|
if (padMode.empty())
|
|
{
|
|
padding_mode = vkcom::kPaddingModeCaffe;
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
padding_mode = vkcom::kPaddingModeValid;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
padding_mode = vkcom::kPaddingModeSame;
|
|
}
|
|
else
|
|
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
|
|
|
|
std::shared_ptr<vkcom::OpBase> op(new vkcom::OpConv(out_channel, has_bias,
|
|
filter_size, pad_size,
|
|
stride_size, dilation_size,
|
|
activation, group,
|
|
padding_mode));
|
|
|
|
std::vector<Ptr<BackendWrapper> > blobsWrapper;
|
|
|
|
if (fusedWeights)
|
|
{
|
|
Mat wm;
|
|
weightsMat.copyTo(wm); // to handle the case of isContinuous() == false
|
|
wm = wm.reshape(1, blobs[0].dims, blobs[0].size);
|
|
blobsWrapper.push_back(Ptr<BackendWrapper>(new VkComBackendWrapper(wm)));
|
|
}
|
|
else
|
|
{
|
|
blobsWrapper.push_back(Ptr<BackendWrapper>(new VkComBackendWrapper(blobs[0])));
|
|
}
|
|
|
|
if (has_bias)
|
|
{
|
|
Mat biasesMat({out_channel}, CV_32F, &biasvec[0]);
|
|
blobsWrapper.push_back(Ptr<BackendWrapper>(new VkComBackendWrapper(biasesMat)));
|
|
}
|
|
|
|
return Ptr<BackendNode>(new VkComBackendNode(inputs, op, blobsWrapper));
|
|
#endif // HAVE_VULKAN
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
const int inpCn = inputBuffer.channels();
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
const int outGroupCn = outCn / group;
|
|
|
|
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
if (pad.width || pad.height)
|
|
{
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
}
|
|
else
|
|
{
|
|
padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
|
|
}
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
|
|
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
|
|
Halide::Expr kc = r.z;
|
|
for (int i = 1; i < group; ++i)
|
|
{
|
|
kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z);
|
|
}
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
|
|
weights(r.x, r.y, r.z, c));
|
|
if (hasBias())
|
|
{
|
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
|
|
std::vector<size_t> dims = input->getDims();
|
|
CV_Assert(dims.size() == 4 || dims.size() == 5);
|
|
const int inpCn = dims[1];
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
InferenceEngine::Layout layout = (dims.size() == 4) ? InferenceEngine::Layout::OIHW :
|
|
InferenceEngine::Layout::NCDHW;
|
|
|
|
auto ieWeights = wrapToInfEngineBlob(blobs[0], layout);
|
|
if (fusedWeights)
|
|
{
|
|
if (weightsMat.isContinuous())
|
|
{
|
|
Mat cvWeights = weightsMat.reshape(1, blobs[0].dims, blobs[0].size);
|
|
ieWeights = wrapToInfEngineBlob(cvWeights, layout);
|
|
}
|
|
else
|
|
{
|
|
ieWeights = InferenceEngine::make_shared_blob<float>({
|
|
InferenceEngine::Precision::FP32,
|
|
ieWeights->getTensorDesc().getDims(), layout
|
|
});
|
|
ieWeights->allocate();
|
|
|
|
Mat newWeights = infEngineBlobToMat(ieWeights).reshape(1, outCn);
|
|
Mat cvWeights = weightsMat.colRange(0, newWeights.cols);
|
|
cvWeights.copyTo(newWeights);
|
|
}
|
|
}
|
|
InferenceEngine::Blob::Ptr ieBiases;
|
|
if (hasBias() || fusedBias)
|
|
{
|
|
Mat biasesMat({outCn}, CV_32F, &biasvec[0]);
|
|
ieBiases = wrapToInfEngineBlob(biasesMat, {(size_t)outCn}, InferenceEngine::Layout::C);
|
|
}
|
|
|
|
InferenceEngine::Builder::ConvolutionLayer ieLayer(name);
|
|
|
|
ieLayer.setKernel(kernel_size);
|
|
ieLayer.setStrides(strides);
|
|
ieLayer.setDilation(dilations);
|
|
ieLayer.setPaddingsBegin(pads_begin);
|
|
ieLayer.setPaddingsEnd(pads_end);
|
|
ieLayer.setGroup((size_t)group);
|
|
ieLayer.setOutDepth((size_t)outCn);
|
|
|
|
InferenceEngine::Builder::Layer l = ieLayer;
|
|
addConstantData("weights", ieWeights, l);
|
|
if (ieBiases)
|
|
addConstantData("biases", ieBiases, l);
|
|
|
|
if (!padMode.empty())
|
|
l.getParameters()["auto_pad"] = padMode == "VALID" ? std::string("valid") : std::string("same_upper");
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l));
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert_N(inputs.size() == 1, nodes.size() == 1);
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<size_t> dims = ieInpNode->get_shape();
|
|
CV_Assert(dims.size() == 4 || dims.size() == 5);
|
|
const int inpCn = dims[1];
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
|
|
std::vector<size_t> kernel_shape = getShape<size_t>(blobs[0]);
|
|
auto ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, blobs[0].data);
|
|
if (fusedWeights)
|
|
{
|
|
if (weightsMat.isContinuous())
|
|
{
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, weightsMat.data);
|
|
}
|
|
else
|
|
{
|
|
Mat newWeights = blobs[0].reshape(1, outCn);
|
|
Mat cvWeights = weightsMat.colRange(0, newWeights.cols);
|
|
cvWeights.copyTo(newWeights);
|
|
ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, blobs[0].data);
|
|
}
|
|
}
|
|
|
|
ngraph::op::PadType pad_type = ngraph::op::PadType::EXPLICIT;
|
|
if (!padMode.empty())
|
|
pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::SAME_UPPER;
|
|
|
|
std::shared_ptr<ngraph::Node> conv_node;
|
|
if (group != 1) {
|
|
conv_node = std::make_shared<ngraph::op::GroupConvolution>(
|
|
ieInpNode, ieWeights,
|
|
ngraph::Strides(strides),
|
|
ngraph::Strides(dilations),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
|
|
ngraph::Strides{},
|
|
group,
|
|
pad_type);
|
|
} else {
|
|
conv_node = std::make_shared<ngraph::op::v1::Convolution>(
|
|
ieInpNode, ieWeights,
|
|
ngraph::Strides(strides),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
|
|
ngraph::Strides(dilations),
|
|
pad_type);
|
|
}
|
|
|
|
if (hasBias() || fusedBias)
|
|
{
|
|
std::vector<size_t> shape(conv_node->get_shape().size(), 1);
|
|
shape[1] = outCn;
|
|
auto bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), biasvec.data());
|
|
auto conv_bias = std::make_shared<ngraph::op::v1::Add>(conv_node, bias, ngraph::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_bias));
|
|
}
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_node));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
class ParallelConv : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
|
|
|
|
const Mat* input_;
|
|
const Mat* weights_;
|
|
Mat* output_;
|
|
int outShape[4]; // used only for conv2d
|
|
std::vector<size_t> kernel_size, pads_begin, pads_end, strides, dilations;
|
|
int ngroups_, nstripes_;
|
|
std::vector<int> ofstab_;
|
|
const std::vector<float>* biasvec_;
|
|
const std::vector<float>* reluslope_;
|
|
const ActivationLayer* activ_;
|
|
bool is1x1_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
bool useAVX512;
|
|
|
|
ParallelConv()
|
|
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
|
|
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false)
|
|
{}
|
|
|
|
static void run( const Mat& input, Mat& output, const Mat& weights,
|
|
const std::vector<float>& biasvec,
|
|
const std::vector<float>& reluslope,
|
|
const std::vector<size_t>& kernel_size, const std::vector<size_t>& strides,
|
|
const std::vector<size_t>& pads_begin, const std::vector<size_t>& pads_end,
|
|
const std::vector<size_t>& dilations,
|
|
const ActivationLayer* activ, int ngroups, int nstripes )
|
|
{
|
|
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
CV_Assert_N(
|
|
(input.dims == 4 || input.dims == 5) && (input.dims == output.dims),
|
|
input.size[0] == output.size[0],
|
|
weights.rows == output.size[1],
|
|
weights.cols == (input.size[1]/ngroups)*karea,
|
|
input.type() == output.type(),
|
|
input.type() == weights.type(),
|
|
input.type() == CV_32FC1,
|
|
input.isContinuous(),
|
|
output.isContinuous(),
|
|
biasvec.size() == (size_t)output.size[1]+2);
|
|
ParallelConv p;
|
|
|
|
p.input_ = &input;
|
|
p.weights_ = &weights;
|
|
p.output_ = &output;
|
|
for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i];
|
|
p.outShape[1] /= ngroups;
|
|
|
|
p.kernel_size = kernel_size; p.strides = strides; p.dilations = dilations;
|
|
p.pads_begin = pads_begin; p.pads_end = pads_end;
|
|
|
|
p.ngroups_ = ngroups;
|
|
p.nstripes_ = nstripes;
|
|
|
|
int inpCnAll = input.size[1];
|
|
int depth = (input.dims == 5) ? input.size[2] : 1;
|
|
int width = input.size[input.dims - 1];
|
|
int height = input.size[input.dims - 2];
|
|
int inpCn = inpCnAll / ngroups;
|
|
|
|
bool isConv2D = kernel_size.size() == 2;
|
|
|
|
p.is1x1_ = isConv2D && kernel_size[0] == 1 && kernel_size[1] == 1 &&
|
|
pads_begin[0] == 0 && pads_begin[1] == 0;
|
|
|
|
p.useAVX = checkHardwareSupport(CPU_AVX) && isConv2D;
|
|
p.useAVX2 = checkHardwareSupport(CPU_AVX2) && isConv2D;
|
|
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX && isConv2D;
|
|
|
|
int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
|
|
|
|
int kernel_d = !isConv2D? kernel_size[0] : 1;
|
|
int kernel_h = kernel_size[kernel_size.size() - 2];
|
|
int kernel_w = kernel_size.back();
|
|
|
|
int dil_d = !isConv2D? dilations[0] : 1;
|
|
int dil_h = dilations[dilations.size() - 2];
|
|
int dil_w = dilations.back();
|
|
|
|
p.ofstab_.resize(karea * ncn);
|
|
int* ofstab = &p.ofstab_[0];
|
|
|
|
if (isConv2D)
|
|
{
|
|
for( int k = 0; k < ncn; k++ )
|
|
for( int k_r = 0; k_r < kernel_h; k_r++ )
|
|
for( int k_c = 0; k_c < kernel_w; k_c++ )
|
|
ofstab[(k*kernel_h + k_r)*kernel_w + k_c] =
|
|
(k*height + k_r*dil_h)*width + k_c*dil_w;
|
|
}
|
|
else
|
|
{
|
|
for( int k = 0; k < ncn; k++ )
|
|
for (int k_d = 0; k_d < kernel_d; k_d++)
|
|
for( int k_r = 0; k_r < kernel_h; k_r++ )
|
|
for( int k_c = 0; k_c < kernel_w; k_c++ )
|
|
ofstab[(k*kernel_d*kernel_h + k_d*kernel_h + k_r)*kernel_w + k_c] =
|
|
(k*depth*height + k_d*dil_d*height + k_r*dil_h)*width + k_c*dil_w;
|
|
}
|
|
|
|
p.biasvec_ = &biasvec;
|
|
p.reluslope_ = &reluslope;
|
|
p.activ_ = p.reluslope_->empty() ? activ : 0;
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r0) const CV_OVERRIDE
|
|
{
|
|
const int valign = ConvolutionLayerImpl::VEC_ALIGN;
|
|
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
|
|
bool isConv2D = input_->dims == 4;
|
|
|
|
int outW = output_->size[output_->dims - 1];
|
|
int outH = output_->size[output_->dims - 2];
|
|
int outCn = output_->size[1]/ngroups;
|
|
|
|
int depth = !isConv2D? input_->size[2] : 1;
|
|
int height = input_->size[input_->dims - 2];
|
|
int width = input_->size[input_->dims - 1];
|
|
int inpCn = input_->size[1]/ngroups;
|
|
|
|
const int nstripes = nstripes_;
|
|
|
|
int kernel_d = !isConv2D? kernel_size[0] : 1;
|
|
int kernel_h = kernel_size[kernel_size.size() - 2];
|
|
int kernel_w = kernel_size.back();
|
|
int karea = kernel_w*kernel_h*kernel_d;
|
|
|
|
int pad_d = !isConv2D? pads_begin[0] : 0;
|
|
int pad_t = pads_begin[pads_begin.size() - 2];
|
|
int pad_l = pads_begin.back();
|
|
|
|
int stride_d = !isConv2D? strides[0] : 0;
|
|
int stride_h = strides[strides.size() - 2];
|
|
int stride_w = strides.back();
|
|
|
|
int dilation_d = !isConv2D? dilations[0] : 1;
|
|
int dilation_h = dilations[dilations.size() - 2];
|
|
int dilation_w = dilations.back();
|
|
|
|
int i, j, k, d;
|
|
size_t inpPlaneSize = input_->total(2);
|
|
size_t outPlaneSize = output_->total(2);
|
|
bool is1x1 = is1x1_;
|
|
|
|
int stripesPerSample;
|
|
size_t stripeSize;
|
|
Range r = r0;
|
|
|
|
if( nstripes >= batchSize*2 )
|
|
{
|
|
stripesPerSample = nstripes/batchSize;
|
|
stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
|
|
stripeSize = std::min(stripeSize, outPlaneSize);
|
|
}
|
|
else
|
|
{
|
|
stripesPerSample = 1;
|
|
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
|
|
r.start *= samplesPerStripe;
|
|
r.end *= samplesPerStripe;
|
|
stripeSize = outPlaneSize;
|
|
}
|
|
|
|
const float* data_inp0_ = input_->ptr<float>();
|
|
const int* ofstab = &ofstab_[0];
|
|
const float* wptr_orig_ = weights_->ptr<float>();
|
|
size_t wstep = weights_->step1();
|
|
const float* biasptr_ = &biasvec_->at(0);
|
|
const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
|
|
float* data_out0_ = output_->ptr<float>();
|
|
size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE;
|
|
AutoBuffer<float> rowbuf0_(rowbufsz + valign);
|
|
float* rowbuf0 = alignPtr(rowbuf0_.data(), (int)(valign*sizeof(float)));
|
|
|
|
// we clear the buffer once; ultimately, it lets us to avoid
|
|
// tail processing after running the unrolled/vectorized loop.
|
|
// the main idea is to make sure that the tail (a.k.a. padding) of each row
|
|
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
|
|
// does not contain NaNs or Infs. Because the padding in the weights
|
|
// matrix is explicitly initialized with 0's, we handle all other
|
|
// cases nicely, i.e. we can skip expliciting re-initialization
|
|
// of the padding - we just retain elements from the previous iteration
|
|
// of the loop over channels (cn0).
|
|
memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );
|
|
|
|
for( int stripe = r.start; stripe < r.end; stripe++ )
|
|
{
|
|
int subsampleIdx = stripe/stripesPerSample;
|
|
if( subsampleIdx >= batchSize )
|
|
break;
|
|
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
|
|
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
|
|
const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
|
|
float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
|
|
int startOutCn = (subsampleIdx % ngroups)*outCn;
|
|
const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
|
|
const float* biasptr = biasptr_ + startOutCn;
|
|
|
|
for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN )
|
|
{
|
|
int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn);
|
|
int ncn = cn1 - cn0, vsz = karea*ncn;
|
|
int vsz_a = (int)alignSize(vsz, valign);
|
|
const float* wptr = wptr_orig + cn0*karea;
|
|
// we apply [Channels][P]ReLU (if any) during the final pass only.
|
|
const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;
|
|
|
|
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE )
|
|
{
|
|
int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd);
|
|
|
|
int out_d = ofs0 / (outH * outW);
|
|
int out_i = (ofs0 - out_d * outH * outW) / outW;
|
|
int out_j = ofs0 % outW;
|
|
|
|
// do im2row for a part of input tensor
|
|
float* rowbuf = rowbuf0;
|
|
|
|
if (isConv2D)
|
|
{
|
|
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
|
|
{
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
int out_j1 = out_j + delta;
|
|
|
|
int in_i = out_i * stride_h - pad_t;
|
|
int in_j = out_j * stride_w - pad_l;
|
|
const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
|
|
ofs += delta;
|
|
|
|
// do im2row for a part of input tensor
|
|
if( is1x1 )
|
|
{
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
rowbuf[k] = imgptr[k*inpPlaneSize];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
|
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
|
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
|
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
|
{
|
|
// this condition should be true for most of the tensor elements, i.e.
|
|
// most of the time the kernel aperture is inside the tensor X-Y plane.
|
|
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
|
|
{
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
int k1 = ofstab[k];
|
|
float v0 = imgptr[k1];
|
|
float v1 = imgptr[k1 + stride_w];
|
|
rowbuf[k] = v0;
|
|
rowbuf[k+vsz_a] = v1;
|
|
}
|
|
out_j++;
|
|
rowbuf += vsz_a;
|
|
imgptr += stride_w;
|
|
in_j += stride_w;
|
|
}
|
|
else
|
|
{
|
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
// here some non-continuous sub-row of the row will not be
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
// set all the elements to 0's before the loop.
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
for( k = 0; k < ncn; k++ )
|
|
{
|
|
for( i = i0; i < i1; i++ )
|
|
{
|
|
for( j = j0; j < j1; j++ )
|
|
{
|
|
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
|
|
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( ofs = ofs0; ofs < ofs1; out_d += (out_i + 1) / outH, out_i = (out_i + 1) % outH, out_j = 0 )
|
|
{
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
int out_j1 = out_j + delta;
|
|
|
|
int in_d = out_d * stride_d - pad_d;
|
|
int in_i = out_i * stride_h - pad_t;
|
|
int in_j = out_j * stride_w - pad_l;
|
|
const float* imgptr = data_inp0 + (cn0*depth*height + in_d*height + in_i)*width + in_j;
|
|
ofs += delta;
|
|
|
|
int d0 = std::max(0, (-in_d + dilation_d - 1) / dilation_d);
|
|
int d1 = std::min(kernel_d, (depth - in_d + dilation_d - 1) / dilation_d);
|
|
|
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
|
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
|
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
|
{
|
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
// here some non-continuous sub-row of the row will not be
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
// set all the elements to 0's before the loop.
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
for( k = 0; k < ncn; k++ )
|
|
{
|
|
for ( d = d0; d < d1; d++)
|
|
{
|
|
for( i = i0; i < i1; i++ )
|
|
{
|
|
for( j = j0; j < j1; j++ )
|
|
{
|
|
int imgofs = k*(depth*width*height) + d*dilation_d*width*height + i*(dilation_h*width) + j*dilation_w;
|
|
rowbuf[(k*kernel_d*kernel_h + d*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// now compute dot product of the weights
|
|
// and im2row-transformed part of the tensor
|
|
int bsz = ofs1 - ofs0;
|
|
#if CV_TRY_AVX512_SKX
|
|
/* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */
|
|
if(useAVX512)
|
|
opt_AVX512_SKX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX2
|
|
if(useAVX2)
|
|
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if(useAVX)
|
|
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
else
|
|
#endif
|
|
for( int i = 0; i < outCn; i += 2 )
|
|
{
|
|
const float* wptr0 = wptr + i*wstep;
|
|
const float* wptr1 = wptr0 + wstep;
|
|
float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
|
|
float* outptr1 = outptr0 + outPlaneSize;
|
|
float bias0 = biasptr[i], bias1 = biasptr[i+1];
|
|
float r0 = 1.f, r1 = 1.f;
|
|
|
|
if( i+1 >= outCn )
|
|
{
|
|
wptr1 = wptr0;
|
|
outptr1 = outptr0;
|
|
bias1 = bias0;
|
|
}
|
|
|
|
if( relu )
|
|
{
|
|
r0 = relu[i]; r1 = relu[i+1];
|
|
if( i+1 >= outCn )
|
|
r1 = r0;
|
|
}
|
|
|
|
int j = 0;
|
|
#if CV_SIMD128
|
|
v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();
|
|
|
|
for( ; j <= bsz - 4; j += 4 )
|
|
{
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
v_float32x4 s0, s1;
|
|
|
|
if( cn0 == 0 )
|
|
{
|
|
s0 = v_setall_f32(bias0);
|
|
s1 = v_setall_f32(bias1);
|
|
}
|
|
else
|
|
{
|
|
s0 = v_load(outptr0 + j);
|
|
s1 = v_load(outptr1 + j);
|
|
}
|
|
|
|
v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
|
|
vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
|
|
vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
|
|
vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
|
|
for( k = 0; k < vsz; k += 4, rptr += 4 )
|
|
{
|
|
v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k);
|
|
v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a),
|
|
r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3);
|
|
|
|
vs00 += w0*r0;
|
|
vs01 += w0*r1;
|
|
vs02 += w0*r2;
|
|
vs03 += w0*r3;
|
|
|
|
vs10 += w1*r0;
|
|
vs11 += w1*r1;
|
|
vs12 += w1*r2;
|
|
vs13 += w1*r3;
|
|
}
|
|
s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
|
|
s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
|
|
if( relu )
|
|
{
|
|
s0 = v_select(s0 > z, s0, s0*vr0);
|
|
s1 = v_select(s1 > z, s1, s1*vr1);
|
|
}
|
|
|
|
v_store(outptr0 + j, s0);
|
|
v_store(outptr1 + j, s1);
|
|
}
|
|
#endif
|
|
for( ; j < bsz; j++ )
|
|
{
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
float s00, s10;
|
|
|
|
if( cn0 == 0 )
|
|
{
|
|
s00 = bias0;
|
|
s10 = bias1;
|
|
}
|
|
else
|
|
{
|
|
s00 = outptr0[j];
|
|
s10 = outptr1[j];
|
|
}
|
|
|
|
for( k = 0; k < vsz; k++ )
|
|
{
|
|
float r0 = rptr[k];
|
|
s00 += wptr0[k]*r0;
|
|
s10 += wptr1[k]*r0;
|
|
}
|
|
if( relu )
|
|
{
|
|
s00 = s00 > 0.f ? s00 : s00*r0;
|
|
s10 = s10 > 0.f ? s10 : s10*r1;
|
|
}
|
|
|
|
outptr0[j] = s00;
|
|
outptr1[j] = s10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( activ_ )
|
|
activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
|
|
(int)(stripeEnd - stripeStart),
|
|
outPlaneSize, startOutCn, startOutCn + outCn);
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
bool use_half = (inps.depth() == CV_16S);
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
CV_Assert(inputs[i].u != outputs[0].u);
|
|
|
|
if (umat_blobs.empty())
|
|
{
|
|
size_t n = blobs.size();
|
|
umat_blobs.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
blobs[i].copyTo(umat_blobs[i]);
|
|
}
|
|
}
|
|
|
|
if (convolutionOp.empty())
|
|
{
|
|
OCL4DNNConvConfig config;
|
|
config.in_shape = shape(inputs[0]);
|
|
config.out_shape = shape(outputs[0]);
|
|
config.kernel = kernel;
|
|
config.pad = pad;
|
|
config.stride = stride;
|
|
config.dilation = dilation;
|
|
config.group = inputs[0].size[1] / umat_blobs[0].size[1];
|
|
config.bias_term = (hasBias()) ? true : false;
|
|
config.use_half = use_half;
|
|
|
|
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
|
|
}
|
|
|
|
int outCn = umat_blobs[0].size[0];
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
{
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU;
|
|
}
|
|
|
|
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
|
|
if( !activ_relu6.empty() )
|
|
{
|
|
reluslope.resize(2);
|
|
reluslope[0] = activ_relu6->minValue;
|
|
reluslope[1] = activ_relu6->maxValue;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU6;
|
|
}
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU;
|
|
}
|
|
}
|
|
|
|
if (fusedWeights)
|
|
{
|
|
weightsMat.copyTo(umat_blobs[0]);
|
|
fusedWeights = false;
|
|
}
|
|
if (fusedBias)
|
|
{
|
|
if ( umat_blobs.size() < 2 )
|
|
umat_blobs.resize(2);
|
|
umat_blobs[1] = UMat(biasvec, true);
|
|
convolutionOp->setBias(true);
|
|
fusedBias = false;
|
|
}
|
|
|
|
if ( newActiv )
|
|
{
|
|
if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU )
|
|
{
|
|
CV_Assert(!reluslope.empty());
|
|
convolutionOp->setActivReLU(true, reluslope[0]);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU)
|
|
{
|
|
CV_Assert(!reluslope.empty());
|
|
convolutionOp->setActivPReLU(true, reluslope);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER)
|
|
{
|
|
convolutionOp->setActivPower(true, power);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_TANH)
|
|
{
|
|
convolutionOp->setActivTanh(true);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU6)
|
|
{
|
|
convolutionOp->setActivReLU6(true, reluslope[0], reluslope[1]);
|
|
}
|
|
else
|
|
{
|
|
convolutionOp->setActivReLU(false, 0);
|
|
convolutionOp->setActivPReLU(false, reluslope);
|
|
convolutionOp->setActivPower(false, 1.f);
|
|
convolutionOp->setActivTanh(false);
|
|
convolutionOp->setActivReLU6(false, 0, 0);
|
|
}
|
|
newActiv = false;
|
|
}
|
|
|
|
UMat& inpMat = inputs[0];
|
|
UMat& outMat = outputs[0];
|
|
int batch_size = inpMat.size[0];
|
|
|
|
return convolutionOp->Forward(inpMat,
|
|
inputs.size() == 2 ? inputs[1] : UMat(),
|
|
umat_blobs[0],
|
|
umat_blobs.size() > 1 ? umat_blobs[1] : UMat(),
|
|
outMat,
|
|
batch_size);
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
/*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3],
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
stride.width, stride.height, dilation.width, dilation.height);*/
|
|
CV_Assert_N(inputs.size() == (size_t)1, inputs[0].size[1] % blobs[0].size[1] == 0,
|
|
outputs.size() == 1, inputs[0].data != outputs[0].data);
|
|
|
|
int ngroups = inputs[0].size[1]/blobs[0].size[1];
|
|
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
|
int outCn = blobs[0].size[0];
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
{
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
}
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
}
|
|
}
|
|
|
|
int nstripes = std::max(getNumThreads(), 1);
|
|
|
|
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
|
|
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
CV_Assert(inputs.size() == 1);
|
|
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto input_shape = input_wrapper->getShape();
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
auto output_wrapper = outputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto output_shape = output_wrapper->getShape();
|
|
|
|
const auto output_feature_maps = blobs[0].size[0];
|
|
const auto input_feature_maps = input_shape[1];
|
|
const auto input_feature_maps_per_group = blobs[0].size[1];
|
|
const auto groups = input_feature_maps / input_feature_maps_per_group;
|
|
|
|
ConvolutionConfiguration config;
|
|
config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size));
|
|
config.dilations.assign(std::begin(dilations), std::end(dilations));
|
|
config.strides.assign(std::begin(strides), std::end(strides));
|
|
|
|
if (padMode.empty())
|
|
{
|
|
config.padMode = ConvolutionConfiguration::PaddingMode::MANUAL;
|
|
config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin));
|
|
config.pads_end.assign(std::begin(pads_end), std::end(pads_end));
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
config.padMode = ConvolutionConfiguration::PaddingMode::VALID;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
config.padMode = ConvolutionConfiguration::PaddingMode::SAME;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by ConvolutionLayer");
|
|
}
|
|
|
|
config.input_shape.assign(std::begin(input_shape), std::end(input_shape));
|
|
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
|
|
config.groups = groups;
|
|
|
|
Mat filtersMat = fusedWeights ? weightsMat : blobs[0];
|
|
Mat biasMat = (hasBias() || fusedBias) ? Mat(output_feature_maps, 1, CV_32F, biasvec.data()) : Mat();
|
|
if (countNonZero(biasMat) == 0)
|
|
biasMat = Mat();
|
|
|
|
return make_cuda_node<cuda4dnn::ConvolutionOp>(
|
|
preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat);
|
|
}
|
|
#endif
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
int64 flops = 0;
|
|
int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies<size_t>());
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
class DeConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
Mat weightsMat, biasesMat;
|
|
UMat umat_weights;
|
|
UMat umat_biases;
|
|
|
|
DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {}
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
|
{
|
|
int dims = inpShape.size();
|
|
int inpCn = inpShape[1];
|
|
int inpD = dims == 5 ? inpShape[2] : 1;
|
|
int inpH = inpShape[dims - 2];
|
|
int inpW = inpShape.back();
|
|
int outCn = outShape[1];
|
|
int ngroups = inpCn / blobs[0].size[0];
|
|
int outGroupCn = outCn / ngroups;
|
|
int ksize = outGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
return shape(ksize, inpD * inpH * inpW);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
if (backendId == DNN_BACKEND_CUDA)
|
|
{
|
|
/* only deconvolution 2d and 3d supported */
|
|
if (kernel_size.size() == 2 || kernel_size.size() == 3)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or IODHW layout
|
|
const int group = numOutput / outGroupCn;
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
|
|
if (padMode.empty()) {
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (pads_end[i] < adjust_pads[i])
|
|
return false;
|
|
}
|
|
} else if (padMode == "SAME") {
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (kernel_size[i] < pads_begin[i] + 1 + adjust_pads[i])
|
|
return false;
|
|
}
|
|
} else if (padMode == "VALID")
|
|
return false;
|
|
|
|
return group == 1;
|
|
}
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
{
|
|
if (kernel_size.size() == 3 && preferableTarget != DNN_TARGET_CPU) {
|
|
return false;
|
|
}
|
|
|
|
if (std::accumulate(adjust_pads.begin(), adjust_pads.end(), 0, std::plus<size_t>()) > 0)
|
|
{
|
|
if (padMode.empty())
|
|
{
|
|
if (preferableTarget != DNN_TARGET_CPU && group != 1)
|
|
{
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (adjust_pads[i] && pads_begin[i])
|
|
return false;
|
|
}
|
|
}
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (pads_end[i] < adjust_pads[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
if (kernel_size[i] < pads_begin[i] + 1 + adjust_pads[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if (padMode == "VALID")
|
|
return false;
|
|
}
|
|
|
|
if (group != 1)
|
|
{
|
|
return preferableTarget == DNN_TARGET_CPU;
|
|
}
|
|
if (preferableTarget == DNN_TARGET_OPENCL || preferableTarget == DNN_TARGET_OPENCL_FP16)
|
|
return std::accumulate(dilations.begin(), dilations.end(), 1, std::multiplies<size_t>()) == 1;
|
|
return true;
|
|
}
|
|
else
|
|
#endif // HAVE_INF_ENGINE
|
|
return backendId == DNN_BACKEND_CUDA ||
|
|
(kernel_size.size() == 2 && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE));
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput);
|
|
CV_Assert(inputs.size() != 0);
|
|
|
|
int outCn = numOutput;
|
|
std::vector<int> outShape;
|
|
outShape.push_back(inputs[0][0]); // batch
|
|
outShape.push_back(outCn);
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]);
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]);
|
|
}
|
|
else
|
|
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
|
|
|
|
CV_Assert(outCn % blobs[0].size[1] == 0);
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
|
|
int inpCn = inputs[0][1];
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
CV_Assert(blobs[0].size[0] == inpCn);
|
|
|
|
outputs.resize(1, outShape);
|
|
|
|
if (!is1x1())
|
|
internals.push_back(computeColRowShape(inputs[0], outputs[0]));
|
|
|
|
return false;
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
std::vector<int> inpShape;
|
|
std::vector<int> outShape;
|
|
for (int i = 2; i < inputs[0].dims; i++) {
|
|
inpShape.push_back(inputs[0].size[i]);
|
|
outShape.push_back(outputs[0].size[i]);
|
|
}
|
|
getConvPoolPaddings(outShape, kernel_size, strides, padMode, pads_begin, pads_end);
|
|
if (pads_begin.size() == 2) {
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
}
|
|
|
|
weightsMultipliers.assign(numOutput, 1.0);
|
|
if (weightsMat.empty())
|
|
{
|
|
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, numOutput)
|
|
: Mat::zeros(numOutput, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
|
{
|
|
Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
|
Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
|
|
|
CV_Assert_N(!weightsMat.empty(),
|
|
w.empty() || numOutput == w.total(),
|
|
b.empty() || numOutput == b.total());
|
|
|
|
if (!w.empty())
|
|
{
|
|
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
|
weightsMat = weightsMat.reshape(1, numOutput);
|
|
for (int i = 0; i < numOutput; ++i)
|
|
{
|
|
double wi = w.at<float>(i);
|
|
weightsMultipliers[i] *= wi;
|
|
cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i));
|
|
biasesMat.at<float>(i) *= wi;
|
|
}
|
|
weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]);
|
|
}
|
|
|
|
if (!b.empty())
|
|
{
|
|
cv::add(biasesMat, b.reshape(1, numOutput), biasesMat);
|
|
}
|
|
}
|
|
|
|
class MatMulInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
|
|
{
|
|
a_ = &a;
|
|
b_ = &b;
|
|
c_ = &c;
|
|
nstripes_ = nstripes;
|
|
useAVX = checkHardwareSupport(CPU_AVX);
|
|
useAVX2 = checkHardwareSupport(CPU_AVX2);
|
|
useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
|
|
}
|
|
|
|
void operator()(const Range& range_) const CV_OVERRIDE
|
|
{
|
|
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
|
|
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
|
|
int mmax = a_->rows;
|
|
int nmax = range.end - range.start;
|
|
int kmax = a_->cols;
|
|
int m, n, k;
|
|
const float* aptr = a_->ptr<float>();
|
|
const float* bptr = b_->ptr<float>() + range.start;
|
|
float* cptr = c_->ptr<float>() + range.start;
|
|
size_t astep = a_->step1();
|
|
size_t bstep = b_->step1();
|
|
size_t cstep = c_->step1();
|
|
|
|
#if CV_TRY_AVX512_SKX
|
|
if( useAVX512 )
|
|
opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX2
|
|
if( useAVX2 )
|
|
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if( useAVX )
|
|
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
for( m = 0; m < mmax; m += 2 )
|
|
{
|
|
float* dst0 = cptr + cstep*m;
|
|
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
|
|
const float* aptr0 = aptr + astep*m;
|
|
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
|
|
|
|
for( n = 0; n < nmax; n++ )
|
|
{
|
|
dst0[n] = 0.f;
|
|
dst1[n] = 0.f;
|
|
}
|
|
|
|
for( k = 0; k < kmax; k += 4 )
|
|
{
|
|
float alpha00 = aptr0[k];
|
|
float alpha01 = aptr1[k];
|
|
float alpha10 = 0.f, alpha11 = 0.f;
|
|
float alpha20 = 0.f, alpha21 = 0.f;
|
|
float alpha30 = 0.f, alpha31 = 0.f;
|
|
const float* bptr0 = bptr + k*bstep;
|
|
const float* bptr1 = bptr0;
|
|
const float* bptr2 = bptr0;
|
|
const float* bptr3 = bptr0;
|
|
|
|
if( k+1 < kmax )
|
|
{
|
|
alpha10 = aptr0[k+1];
|
|
alpha11 = aptr1[k+1];
|
|
bptr1 = bptr0 + bstep;
|
|
if( k+2 < kmax )
|
|
{
|
|
alpha20 = aptr0[k+2];
|
|
alpha21 = aptr1[k+2];
|
|
bptr2 = bptr1 + bstep;
|
|
if( k+3 < kmax )
|
|
{
|
|
alpha30 = aptr0[k+3];
|
|
alpha31 = aptr1[k+3];
|
|
bptr3 = bptr2 + bstep;
|
|
}
|
|
}
|
|
}
|
|
n = 0;
|
|
|
|
#if CV_SIMD128
|
|
v_float32x4 a00 = v_setall_f32(alpha00);
|
|
v_float32x4 a01 = v_setall_f32(alpha01);
|
|
v_float32x4 a10 = v_setall_f32(alpha10);
|
|
v_float32x4 a11 = v_setall_f32(alpha11);
|
|
v_float32x4 a20 = v_setall_f32(alpha20);
|
|
v_float32x4 a21 = v_setall_f32(alpha21);
|
|
v_float32x4 a30 = v_setall_f32(alpha30);
|
|
v_float32x4 a31 = v_setall_f32(alpha31);
|
|
|
|
for( ; n <= nmax - 4; n += 4 )
|
|
{
|
|
v_float32x4 b0 = v_load(bptr0 + n);
|
|
v_float32x4 b1 = v_load(bptr1 + n);
|
|
v_float32x4 b2 = v_load(bptr2 + n);
|
|
v_float32x4 b3 = v_load(bptr3 + n);
|
|
v_float32x4 d0 = v_load(dst0 + n);
|
|
v_float32x4 d1 = v_load(dst1 + n);
|
|
d0 += b0*a00;
|
|
d1 += b0*a01;
|
|
d0 += b1*a10;
|
|
d1 += b1*a11;
|
|
d0 += b2*a20;
|
|
d1 += b2*a21;
|
|
d0 += b3*a30;
|
|
d1 += b3*a31;
|
|
v_store(dst0 + n, d0);
|
|
v_store(dst1 + n, d1);
|
|
}
|
|
#endif
|
|
|
|
for( ; n < nmax; n++ )
|
|
{
|
|
float b0 = bptr0[n], b1 = bptr1[n];
|
|
float b2 = bptr2[n], b3 = bptr3[n];
|
|
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
|
|
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
|
|
dst0[n] = d0;
|
|
dst1[n] = d1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat *a_, *b_;
|
|
Mat* c_;
|
|
int nstripes_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
bool useAVX512;
|
|
};
|
|
|
|
class Col2ImInvoker : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
const float* data_col;
|
|
const float* biasvec;
|
|
int channels, height, width;
|
|
int kernel_h, kernel_w;
|
|
int pad_h, pad_w;
|
|
int stride_h, stride_w;
|
|
float* data_im;
|
|
int height_col, width_col;
|
|
int nstripes;
|
|
bool is1x1;
|
|
|
|
Col2ImInvoker()
|
|
: data_col(0), biasvec(0), channels(0), height(0), width(0),
|
|
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
|
|
height_col(0), width_col(0), nstripes(0), is1x1(0)
|
|
{}
|
|
|
|
static void run(const float* data_col,
|
|
int channels, int height, int width,
|
|
int kernel_h, int kernel_w,
|
|
int pad_h, int pad_w,
|
|
int stride_h, int stride_w,
|
|
int height_col, int width_col,
|
|
float* data_im,
|
|
const float* biasvec,
|
|
bool is1x1)
|
|
{
|
|
const int nstripes = getNumThreads();
|
|
|
|
Col2ImInvoker t;
|
|
t.data_col = data_col;
|
|
t.data_im = data_im;
|
|
t.channels = channels; t.height = height; t.width = width;
|
|
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
|
|
t.pad_h = pad_h; t.pad_w = pad_w;
|
|
t.stride_h = stride_h; t.stride_w = stride_w;
|
|
t.height_col = height_col;
|
|
t.width_col = width_col;
|
|
t.nstripes = nstripes;
|
|
t.is1x1 = is1x1;
|
|
t.biasvec = biasvec;
|
|
|
|
parallel_for_(Range(0, nstripes), t, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r) const CV_OVERRIDE
|
|
{
|
|
const float* data_col_ = data_col;
|
|
float* data_im_ = data_im;
|
|
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
|
|
int coeff_w = (1 - stride_w * height_col * width_col);
|
|
size_t total = (size_t)channels * height * width;
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t startIndex = r.start*stripeSize;
|
|
size_t endIndex = std::min(r.end*stripeSize, total);
|
|
int w = (int)(startIndex % width + pad_w);
|
|
int h = (int)((startIndex / width) % height + pad_h);
|
|
int c = (int)(startIndex / (width * height));
|
|
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
int h_col_end = std::min(h / stride_h + 1, height_col);
|
|
int plane_size_col = height_col * width_col;
|
|
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
bool is1x1_ = is1x1;
|
|
const float* biasvec_ = biasvec;
|
|
|
|
for (size_t index = startIndex; index < endIndex; index++)
|
|
{
|
|
// compute the start and end of the output
|
|
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
|
|
int w_col_end = std::min(w / stride_w + 1, width_col);
|
|
float val;
|
|
|
|
if( is1x1_ )
|
|
val = data_im_[index];
|
|
else
|
|
{
|
|
val = 0.f;
|
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
|
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
|
|
}
|
|
}
|
|
}
|
|
data_im_[index] = val + biasvec_[c];
|
|
|
|
offset += plane_size_col;
|
|
if( ++w >= width + pad_w )
|
|
{
|
|
w = (int)((index + 1)% width + pad_w);
|
|
h = (int)(((index + 1) / width) % height + pad_h);
|
|
c = (int)((index + 1) / (width * height));
|
|
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
h_col_end = std::min(h / stride_h + 1, height_col);
|
|
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
if (inputs_.depth() == CV_16S)
|
|
return false;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
internals_.getUMatVector(internals);
|
|
|
|
int outCn = numOutput;
|
|
int inpCn = inputs[0].size[1];
|
|
|
|
if (is1x1())
|
|
return false;
|
|
|
|
if (umat_weights.empty())
|
|
{
|
|
if (fusedWeights)
|
|
weightsMat.copyTo(umat_weights);
|
|
else
|
|
transpose(blobs[0].reshape(1, inpCn), umat_weights);
|
|
|
|
if (fusedBias)
|
|
biasesMat.copyTo(umat_biases);
|
|
else
|
|
{
|
|
if (hasBias())
|
|
blobs[1].reshape(1, outCn).copyTo(umat_biases);
|
|
else
|
|
umat_biases = UMat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type()));
|
|
buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ",
|
|
pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width);
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
int inpGroupCn = inpCn / ngroups;
|
|
int outGroupCn = blobs[0].size[1];
|
|
const UMat& inp = inputs[ii];
|
|
UMat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int inpH = inp.size[2], inpW = inp.size[3];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
MatShape inpshape = shape(numImg*inpCn, inpH*inpW);
|
|
MatShape outshape = shape(numImg*outCn, outH*outW);
|
|
UMat convBlob = inputs[ii].reshape(1, inpshape.size(), &inpshape[0]);
|
|
UMat decnBlob = out.reshape(1, outshape.size(), &outshape[0]);
|
|
int rows = internals[0].rows / ngroups;
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
UMat colMat = internals[0].rowRange(_Range(g * rows, rows));
|
|
UMat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0);
|
|
}
|
|
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
int total = outGroupCn * decnBlob.cols;
|
|
int index = 0;
|
|
int height_col = inpH;
|
|
int width_col = inpW;
|
|
int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col;
|
|
int coeff_w = (1 - stride.width * height_col * width_col);
|
|
|
|
ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt);
|
|
k.set(index++, total);
|
|
k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0]));
|
|
k.set(index++, (int)(g * rows * internals[0].cols));
|
|
k.set(index++, outGroupCn);
|
|
k.set(index++, outH);
|
|
k.set(index++, outW);
|
|
k.set(index++, height_col);
|
|
k.set(index++, width_col);
|
|
k.set(index++, coeff_h);
|
|
k.set(index++, coeff_w);
|
|
k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases));
|
|
k.set(index++, (int)(g * outGroupCn * umat_biases.cols));
|
|
k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob));
|
|
k.set(index++, (int)((g + n * ngroups) * outGroupCn * decnBlob.cols));
|
|
|
|
size_t global[] = { (size_t)total };
|
|
bool ret = k.run(1, global, NULL, false);
|
|
if (!ret)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr));
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
int outCn = numOutput;
|
|
int inpCn = inputs[0].size[1];
|
|
bool is1x1flag = is1x1();
|
|
int nstripes = getNumThreads();
|
|
|
|
if( weightsMat.empty() )
|
|
{
|
|
transpose(blobs[0].reshape(1, inpCn), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
int inpGroupCn = inpCn / ngroups;
|
|
int outGroupCn = blobs[0].size[1];
|
|
const Mat& inp = inputs[ii];
|
|
Mat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int inpH = inp.size[2], inpW = inp.size[3];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
Mat convBlob = inputs[ii].reshape(1, numImg*inpCn);
|
|
Mat decnBlob = out.reshape(1, numImg*outCn);
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
|
|
Mat &colMat = is1x1flag ? dstMat : internals[0];
|
|
|
|
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
|
|
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
|
|
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
|
|
|
|
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
|
|
kernel.height, kernel.width, pad.height, pad.width,
|
|
stride.height, stride.width, inpH, inpW, dstMat.ptr<float>(),
|
|
curBiasMat.ptr<float>(), is1x1flag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
CV_Assert(inputs.size() == 1);
|
|
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto input_shape = input_wrapper->getShape();
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
auto output_wrapper = outputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto output_shape = output_wrapper->getShape();
|
|
|
|
const auto output_feature_maps = numOutput;
|
|
const auto output_feature_maps_per_group = blobs[0].size[1];
|
|
const auto groups = output_feature_maps / output_feature_maps_per_group;
|
|
|
|
TransposeConvolutionConfiguration config;
|
|
config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size));
|
|
config.dilations.assign(std::begin(dilations), std::end(dilations));
|
|
config.strides.assign(std::begin(strides), std::end(strides));
|
|
|
|
if (padMode.empty())
|
|
{
|
|
config.padMode = TransposeConvolutionConfiguration::PaddingMode::MANUAL;
|
|
config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin));
|
|
config.pads_end.assign(std::begin(pads_end), std::end(pads_end));
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
config.padMode = TransposeConvolutionConfiguration::PaddingMode::VALID;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
config.padMode = TransposeConvolutionConfiguration::PaddingMode::SAME;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by DeconvolutionLayer");
|
|
}
|
|
|
|
config.input_shape.assign(std::begin(input_shape), std::end(input_shape));
|
|
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
|
|
config.groups = groups;
|
|
|
|
CV_Assert(blobs.size() >= 1);
|
|
Mat filtersMat = fusedWeights ? weightsMat.t() : blobs[0];
|
|
|
|
Mat biasMat = (hasBias() || fusedBias) ? biasesMat : Mat();
|
|
if (countNonZero(biasMat) == 0)
|
|
biasMat = Mat();
|
|
|
|
return make_cuda_node<cuda4dnn::TransposeConvolutionOp>(
|
|
preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat);
|
|
}
|
|
#endif
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
int inW, inH, inC, inN;
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
const int outGroupCn = blobs[0].size[1];
|
|
const int group = numOutput / outGroupCn;
|
|
const int inpGroupCn = blobs[0].size[0] / group;
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
auto weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Func dilated_input("dilated_input");
|
|
dilated_input(x, y, c, n) = 0.0f;
|
|
Halide::RDom r1(0, inW, 0, inH);
|
|
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
|
|
inputBuffer(r1.x, r1.y, c, n);
|
|
dilated_input.compute_root();
|
|
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
|
|
0, (inW - 1) * stride.width + 1,
|
|
0, (inH - 1) * stride.height + 1,
|
|
0, inC, 0, inN);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
Halide::Expr kx = x + pad.width - r.x;
|
|
Halide::Expr ky = y + pad.height - r.y;
|
|
Halide::Expr kInC = r.z;
|
|
Halide::Expr kOutC = c;
|
|
for (int i = 1; i < group; ++i)
|
|
{
|
|
kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z);
|
|
kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i);
|
|
}
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) *
|
|
weights(r.x, r.y, kOutC, kInC));
|
|
if (hasBias())
|
|
{
|
|
auto bias = wrapToHalideBuffer(blobs[1], {numOutput});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::Layout layout = blobs[0].dims == 5? InferenceEngine::Layout::NCDHW :
|
|
InferenceEngine::Layout::OIHW;
|
|
|
|
auto ieWeights = wrapToInfEngineBlob(blobs[0], layout);
|
|
if (fusedWeights)
|
|
{
|
|
ieWeights = InferenceEngine::make_shared_blob<float>({
|
|
InferenceEngine::Precision::FP32,
|
|
ieWeights->getTensorDesc().getDims(), layout
|
|
});
|
|
ieWeights->allocate();
|
|
|
|
int inpCn = blobs[0].size[0];
|
|
Mat newWeights = infEngineBlobToMat(ieWeights).reshape(1, inpCn);
|
|
transpose(weightsMat, newWeights);
|
|
}
|
|
|
|
const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or OIDHW layout
|
|
const int group = numOutput / outGroupCn;
|
|
|
|
InferenceEngine::Builder::DeconvolutionLayer ieLayer(name);
|
|
|
|
ieLayer.setKernel(kernel_size);
|
|
ieLayer.setStrides(strides);
|
|
ieLayer.setDilation(dilations);
|
|
ieLayer.setPaddingsBegin(pads_begin);
|
|
|
|
if (padMode.empty())
|
|
{
|
|
std::vector<size_t> paddings_end;
|
|
for (int i = 0; i < pads_end.size(); i++) {
|
|
paddings_end.push_back(pads_end[i] - adjust_pads[i]);
|
|
}
|
|
ieLayer.setPaddingsEnd(paddings_end);
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
std::vector<size_t> paddings_end;
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]);
|
|
}
|
|
ieLayer.setPaddingsEnd(paddings_end);
|
|
}
|
|
ieLayer.setGroup((size_t)group);
|
|
ieLayer.setOutDepth((size_t)numOutput);
|
|
|
|
InferenceEngine::Builder::Layer l = ieLayer;
|
|
addConstantData("weights", ieWeights, l);
|
|
if (hasBias())
|
|
addConstantData("biases", wrapToInfEngineBlob(biasesMat, {(size_t)numOutput}, InferenceEngine::Layout::C), l);
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l));
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
const int outGroupCn = blobs[0].size[1];
|
|
const int group = numOutput / outGroupCn;
|
|
CV_Assert(group == 1);
|
|
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<size_t> kernel_shape = getShape<size_t>(blobs[0]);
|
|
auto ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, kernel_shape, blobs[0].data);
|
|
|
|
if (fusedWeights)
|
|
{
|
|
int inpCn = blobs[0].size[0];
|
|
Mat newWeights = blobs[0].reshape(1, inpCn);
|
|
transpose(weightsMat, newWeights);
|
|
}
|
|
size_t batch = ieInpNode->get_shape()[0];
|
|
std::vector<size_t> out_shape = {batch, (size_t)numOutput};
|
|
std::vector<size_t> paddings_end;
|
|
std::vector<size_t> inpShape = ieInpNode->get_shape();
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < pads_end.size(); i++) {
|
|
out_shape.push_back(strides[i] * (inpShape[2 + i] - 1) +
|
|
kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
|
|
paddings_end.push_back(pads_end[i] - adjust_pads[i]);
|
|
}
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
out_shape.push_back(strides[i] * (inpShape[2 + i] - 1) + 1 + adjust_pads[i]);
|
|
paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]);
|
|
}
|
|
} else {
|
|
paddings_end = pads_end;
|
|
}
|
|
|
|
auto deconv = std::make_shared<ngraph::op::ConvolutionBackpropData>(
|
|
ngraph::Shape{out_shape},
|
|
ieWeights,
|
|
ieInpNode,
|
|
ngraph::Strides(strides),
|
|
ngraph::Strides(dilations),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ngraph::CoordinateDiff(std::vector<std::ptrdiff_t>(paddings_end.begin(), paddings_end.end())),
|
|
(strides.size() == 2 ? ngraph::Strides{1, 1} : ngraph::Strides{1, 1, 1}));
|
|
if (hasBias() || fusedBias)
|
|
{
|
|
std::vector<size_t> shape(deconv->get_shape().size(), 1);
|
|
shape[1] = numOutput;
|
|
auto bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), blobs[1].data);
|
|
auto deconv_bias = std::make_shared<ngraph::op::v1::Add>(deconv, bias, ngraph::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv_bias));
|
|
}
|
|
|
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
float flops = 0;
|
|
int outChannels = blobs[0].size[0];
|
|
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += CV_BIG_INT(2)*outChannels*karea*total(inputs[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
Ptr<ConvolutionLayerImpl> l(new ConvolutionLayerImpl(params));
|
|
return l;
|
|
}
|
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
return Ptr<BaseConvolutionLayer>(new DeConvolutionLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|