mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 09:49:12 +08:00
80c5d18f9c
Add support for 3D point cloud segmentation, using the USAC framework. * Modify the RANSAC framework in usac such that RANSAC can be used in 3D point cloud segmentation. * 1. Add support for 3D point cloud segmentation, using the USAC framework. 2. Add solvers, error estimators for plane model and sphere model. * Added code samples to the comments of class SACSegmentation. * 1. Update the segment interface parameters of SACSegmentation. 2. Fix some errors in variable naming. * Add tests for plane detection. * 1. Add tests for sphere segmentation. 2. Fix some bugs found by tests. 3. Rename "segmentation" to "sac segmentation". 4. Rename "detect" to "segment". TODO: Too much duplicate code, the structure of the test needs to be rebuilt. * 1. Use SIMD acceleration for plane model and sphere model error estimation. 2. Optimize the RansacQualityImpl#getScore function to avoid multiple calls to the error#getError function. 3. Fix a warning in test_sac_segmentation.cpp. * 1. Fix the warning of ModelConstraintFunction ambiguity. 2. Fix warning: no previous declaration for'void cv::usac::modelParamsToUsacConfig(cv::Ptr<cv::usac::SimpleUsacConfig>&, const cv::Ptr<const cv::usac::Model>& ) * Fix a warning in test_sac_segmentation.cpp about direct comparison of different types of data. * Add code comments related to the interpretation of model coefficients. * Update the use of custom model constraint functions. * Simplified test code structure. * Update the method of checking plane models. * Delete test for cylinder. * Add some comments about UniversalRANSAC. * 1. The RANSAC paper in the code comments is referenced using the bibtex format. 2. The sample code in the code comments is replaced using @snippet. 3. Change the public API class SACSegmentation to interface. 4. Clean up the old useless code. * fix warning(no previous declaration) in 3d_sac_segmentation.cpp. * Fix compilation errors caused by 3d_sac_segmentation.cpp. * Move the function sacModelMinimumSampleSize() from ptcloud.hpp to sac_segmentation.cpp. * 1. Change the interface for setting the number of threads to the interface for setting whether to be parallel. 2. Move interface implementation code in ptcloud_utils.hpp to ptcloud_utils.cpp. * SACSegmentation no longer inherits Algorithm. * Add the constructor and destructor of SACSegmentation. * 1. For the declaration of the common API, the prefix and suffix of the parameter names no longer contain underscores. 2. Rename the function _getMatFromInputArray -> getPointsMatFromInputArray. 3. Change part of CV_CheckDepth to CV_CheckDepthEQ. 4. Remove the doxygen flag from the source code. 5. Update the loop termination condition of SIMD in the point cloud section of 3D module. * fix warning: passing 'bool' chooses 'int' over 'size_t {aka unsigned int}' . * fix warning: passing 'bool' chooses 'int' over 'size_t {aka unsigned int}' .
400 lines
15 KiB
C++
400 lines
15 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
int countNum(const vector<int> &m, int num)
|
|
{
|
|
int t = 0;
|
|
for (int a: m)
|
|
if (a == num) t++;
|
|
return t;
|
|
}
|
|
|
|
string getHeader(const Ptr<SACSegmentation> &s){
|
|
string r;
|
|
if(!s->isParallel())
|
|
r += "One thread ";
|
|
else
|
|
r += std::to_string(getNumThreads()) + "-thread ";
|
|
|
|
if(s->getNumberOfModelsExpected() == 1)
|
|
r += "single model segmentation ";
|
|
else
|
|
r += std::to_string(s->getNumberOfModelsExpected()) + " models segmentation ";
|
|
|
|
if(s->getCustomModelConstraints() == nullptr)
|
|
r += "without constraint:\n";
|
|
else
|
|
r += "with constraint:\n";
|
|
|
|
r += "Confidence: " + std::to_string(s->getConfidence()) + "\n";
|
|
r += "Max Iterations: " + std::to_string(s->getMaxIterations()) + "\n";
|
|
r += "Expected Models Number: " + std::to_string(s->getNumberOfModelsExpected()) + "\n";
|
|
r += "Distance Threshold: " + std::to_string(s->getDistanceThreshold());
|
|
|
|
return r;
|
|
}
|
|
|
|
class SacSegmentationTest : public ::testing::Test
|
|
{
|
|
public:
|
|
// Used to store the parameters of model generation
|
|
vector<vector<float>> models, limits;
|
|
vector<float> thrs;
|
|
vector<int> pt_nums;
|
|
|
|
int models_num = 0;
|
|
// Used to store point cloud, generated plane and model
|
|
Mat pt_cloud, generated_pts, segmented_models;
|
|
vector<int> label;
|
|
Ptr<SACSegmentation> sacSegmentation = SACSegmentation::create();
|
|
SACSegmentation::ModelConstraintFunction model_constraint = nullptr;
|
|
using CheckDiffFunction = std::function<bool(const Mat &, const Mat &)>;
|
|
|
|
void singleModelSegmentation(int iter_num, const CheckDiffFunction &checkDiff, int idx)
|
|
{
|
|
sacSegmentation->setSacMethodType(SAC_METHOD_RANSAC);
|
|
sacSegmentation->setConfidence(1);
|
|
sacSegmentation->setMaxIterations(iter_num);
|
|
sacSegmentation->setNumberOfModelsExpected(1);
|
|
//A point with a distance equal to the threshold is not considered an inliner point
|
|
sacSegmentation->setDistanceThreshold(thrs[idx] + 0.01);
|
|
|
|
int num = sacSegmentation->segment(pt_cloud, label, segmented_models);
|
|
|
|
string header = getHeader(sacSegmentation);
|
|
|
|
ASSERT_EQ(1, num)
|
|
<< header << endl
|
|
<< "Model number should be equal to 1.";
|
|
ASSERT_EQ(pt_cloud.rows, (int) (label.size()))
|
|
<< header << endl
|
|
<< "Label size should be equal to point number.";
|
|
|
|
Mat ans_model, segmented_model;
|
|
ans_model = Mat(1, (int) models[0].size(), CV_32F, models[idx].data());
|
|
segmented_models.row(0).convertTo(segmented_model, CV_32F);
|
|
|
|
ASSERT_TRUE(checkDiff(ans_model, segmented_model))
|
|
<< header << endl
|
|
<< "Initial model is " << ans_model << ". Segmented model is " << segmented_model
|
|
<< ". The difference in coefficients should not be too large.";
|
|
ASSERT_EQ(pt_nums[idx], countNum(label, 1))
|
|
<< header << endl
|
|
<< "There are " << pt_nums[idx] << " points need to be marked.";
|
|
|
|
int start_idx = 0;
|
|
for (int i = 0; i < idx; i++) start_idx += pt_nums[i];
|
|
|
|
for (int i = 0; i < pt_cloud.rows; i++)
|
|
{
|
|
if (i >= start_idx && i < start_idx + pt_nums[idx])
|
|
ASSERT_EQ(1, label[i])
|
|
<< header << endl
|
|
<< "This index should be marked: " << i
|
|
<< ". This point is " << pt_cloud.row(i);
|
|
else
|
|
ASSERT_EQ(0, label[i])
|
|
<< header << endl
|
|
<< "This index should not be marked: "
|
|
<< i << ". This point is " << pt_cloud.row(i);
|
|
}
|
|
}
|
|
|
|
void multiModelSegmentation(int iter_num, const CheckDiffFunction &checkDiff)
|
|
{
|
|
sacSegmentation->setSacMethodType(SAC_METHOD_RANSAC);
|
|
sacSegmentation->setConfidence(1);
|
|
sacSegmentation->setMaxIterations(iter_num);
|
|
sacSegmentation->setNumberOfModelsExpected(models_num);
|
|
sacSegmentation->setDistanceThreshold(thrs[models_num - 1] + 0.01);
|
|
|
|
int num = sacSegmentation->segment(pt_cloud, label, segmented_models);
|
|
|
|
string header = getHeader(sacSegmentation);
|
|
|
|
ASSERT_EQ(models_num, num)
|
|
<< header << endl
|
|
<< "Model number should be equal to " << models_num << ".";
|
|
ASSERT_EQ(pt_cloud.rows, (int) (label.size()))
|
|
<< header << endl
|
|
<< "Label size should be equal to point number.";
|
|
|
|
int checked_num = 0;
|
|
for (int i = 0; i < models_num; i++)
|
|
{
|
|
Mat ans_model, segmented_model;
|
|
ans_model = Mat(1, (int) models[0].size(), CV_32F, models[models_num - 1 - i].data());
|
|
segmented_models.row(i).convertTo(segmented_model, CV_32F);
|
|
|
|
ASSERT_TRUE(checkDiff(ans_model, segmented_model))
|
|
<< header << endl
|
|
<< "Initial model is " << ans_model << ". Segmented model is " << segmented_model
|
|
<< ". The difference in coefficients should not be too large.";
|
|
ASSERT_EQ(pt_nums[models_num - 1 - i], countNum(label, i + 1))
|
|
<< header << endl
|
|
<< "There are " << pt_nums[i] << " points need to be marked.";
|
|
|
|
for (int j = checked_num; j < pt_nums[i]; j++)
|
|
ASSERT_EQ(models_num - i, label[j])
|
|
<< header << endl
|
|
<< "This index " << j << " should be marked as " << models_num - i
|
|
<< ". This point is " << pt_cloud.row(j);
|
|
checked_num += pt_nums[i];
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
TEST_F(SacSegmentationTest, PlaneSacSegmentation)
|
|
{
|
|
sacSegmentation->setSacModelType(SAC_MODEL_PLANE);
|
|
models = {
|
|
{0, 0, 1, 0},
|
|
{1, 0, 0, 0},
|
|
{0, 1, 0, 0},
|
|
{1, 1, 1, -150},
|
|
};
|
|
thrs = {0.1f, 0.2f, 0.3f, 0.4f};
|
|
pt_nums = {100, 200, 300, 400};
|
|
limits = {
|
|
{5, 55, 5, 55, 0, 0},
|
|
{0, 0, 5, 55, 5, 55},
|
|
{5, 55, 0, 0, 5, 55},
|
|
{10, 50, 10, 50, 0, 0},
|
|
};
|
|
models_num = (int) models.size();
|
|
|
|
/**
|
|
* Used to generate a specific plane with random points
|
|
* model: plane coefficient [a,b,c,d] means ax+by+cz+d=0
|
|
* thr: generate the maximum distance from the point to the plane
|
|
* limit: the range of xyz coordinates of the generated plane
|
|
**/
|
|
auto generatePlane = [](Mat &plane_pts, const vector<float> &model, float thr, int num,
|
|
const vector<float> &limit) {
|
|
plane_pts = Mat(num, 3, CV_32F);
|
|
cv::RNG rng(0);
|
|
auto *plane_pts_ptr = (float *) plane_pts.data;
|
|
|
|
// Part of the points are generated for the specific model
|
|
// The other part of the points are used to increase the thickness of the plane
|
|
int std_num = (int) (num / 2);
|
|
// Difference of maximum d between two parallel planes
|
|
float d_thr = thr * sqrt(model[0] * model[0] + model[1] * model[1] + model[2] * model[2]);
|
|
|
|
for (int i = 0; i < num; i++)
|
|
{
|
|
// Let d change then generate thickness
|
|
float d = i < std_num ? model[3] : rng.uniform(model[3] - d_thr, model[3] + d_thr);
|
|
float x, y, z;
|
|
// c is 0 means the plane is vertical
|
|
if (model[2] == 0)
|
|
{
|
|
z = rng.uniform(limit[4], limit[5]);
|
|
if (model[0] == 0)
|
|
{
|
|
x = rng.uniform(limit[0], limit[1]);
|
|
y = -d / model[1];
|
|
}
|
|
else if (model[1] == 0)
|
|
{
|
|
x = -d / model[0];
|
|
y = rng.uniform(limit[2], limit[3]);
|
|
}
|
|
else
|
|
{
|
|
x = rng.uniform(limit[0], limit[1]);
|
|
y = -(model[0] * x + d) / model[1];
|
|
}
|
|
}
|
|
// c is not 0
|
|
else
|
|
{
|
|
x = rng.uniform(limit[0], limit[1]);
|
|
y = rng.uniform(limit[2], limit[3]);
|
|
z = -(model[0] * x + model[1] * y + d) / model[2];
|
|
}
|
|
|
|
plane_pts_ptr[3 * i] = x;
|
|
plane_pts_ptr[3 * i + 1] = y;
|
|
plane_pts_ptr[3 * i + 2] = z;
|
|
}
|
|
};
|
|
|
|
// 1 * 3.1415926f / 180
|
|
float vector_radian_tolerance = 0.0174533f, ratio_tolerance = 0.1f;
|
|
CheckDiffFunction planeCheckDiff = [vector_radian_tolerance, ratio_tolerance](const Mat &a,
|
|
const Mat &b) -> bool {
|
|
Mat m1, m2;
|
|
a.convertTo(m1, CV_32F);
|
|
b.convertTo(m2, CV_32F);
|
|
auto p1 = (float *) m1.data, p2 = (float *) m2.data;
|
|
Vec3f n1(p1[0], p1[1], p1[2]);
|
|
Vec3f n2(p2[0], p2[1], p2[2]);
|
|
float cos_theta_square = n1.dot(n2) * n1.dot(n2) / (n1.dot(n1) * n2.dot(n2));
|
|
|
|
float r1 = p1[3] * p1[3] / n1.dot(n1);
|
|
float r2 = p2[3] * p2[3] / n2.dot(n2);
|
|
|
|
return cos_theta_square >= cos(vector_radian_tolerance) * cos(vector_radian_tolerance)
|
|
&& abs(r1 - r2) <= ratio_tolerance * ratio_tolerance;
|
|
};
|
|
|
|
// Single plane segmentation
|
|
for (int i = 0; i < models_num; i++)
|
|
{
|
|
generatePlane(generated_pts, models[i], thrs[i], pt_nums[i], limits[i]);
|
|
pt_cloud.push_back(generated_pts);
|
|
singleModelSegmentation(1000, planeCheckDiff, i);
|
|
}
|
|
|
|
// Single plane segmentation with constraint
|
|
for (int i = models_num / 2; i < models_num; i++)
|
|
{
|
|
vector<float> constraint_normal = {models[i][0], models[i][1], models[i][2]};
|
|
// Normal vector constraint function
|
|
model_constraint = [constraint_normal](const vector<double> &model) -> bool {
|
|
// The angle between the model normals and the constraints must be less than 1 degree
|
|
// 1 * 3.1415926f / 180
|
|
float radian_thr = 0.0174533f;
|
|
vector<float> model_normal = {(float) model[0], (float) model[1], (float) model[2]};
|
|
float dot12 = constraint_normal[0] * model_normal[0] +
|
|
constraint_normal[1] * model_normal[1] +
|
|
constraint_normal[2] * model_normal[2];
|
|
float m1m1 = constraint_normal[0] * constraint_normal[0] +
|
|
constraint_normal[1] * constraint_normal[1] +
|
|
constraint_normal[2] * constraint_normal[2];
|
|
float m2m2 = model_normal[0] * model_normal[0] +
|
|
model_normal[1] * model_normal[1] +
|
|
model_normal[2] * model_normal[2];
|
|
float square_cos_theta = dot12 * dot12 / (m1m1 * m2m2);
|
|
|
|
return square_cos_theta >= cos(radian_thr) * cos(radian_thr);
|
|
};
|
|
sacSegmentation->setCustomModelConstraints(model_constraint);
|
|
singleModelSegmentation(5000, planeCheckDiff, i);
|
|
}
|
|
|
|
pt_cloud.release();
|
|
sacSegmentation->setCustomModelConstraints(nullptr);
|
|
sacSegmentation->setParallel(true);
|
|
|
|
// Multi-plane segmentation
|
|
for (int i = 0; i < models_num; i++)
|
|
{
|
|
generatePlane(generated_pts, models[i], thrs[models_num - 1], pt_nums[i], limits[i]);
|
|
pt_cloud.push_back(generated_pts);
|
|
}
|
|
multiModelSegmentation(1000, planeCheckDiff);
|
|
}
|
|
|
|
TEST_F(SacSegmentationTest, SphereSacSegmentation)
|
|
{
|
|
sacSegmentation->setSacModelType(cv::SAC_MODEL_SPHERE);
|
|
models = {
|
|
{15, 15, 30, 5},
|
|
{-15, -15, -30, 8},
|
|
{0, 0, -35, 10},
|
|
{0, 0, 0, 15},
|
|
{0, 0, 0, 20},
|
|
};
|
|
thrs = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
|
|
pt_nums = {100, 200, 300, 400, 500};
|
|
limits = {
|
|
{0, 1, 0, 1, 0, 1},
|
|
{-1, 0, -1, 0, -1, 0},
|
|
{-1, 1, -1, 1, 0, 1},
|
|
{-1, 1, -1, 1, -1, 1},
|
|
{-1, 1, -1, 1, -1, 0},
|
|
};
|
|
models_num = (int) models.size();
|
|
|
|
/**
|
|
* Used to generate a specific sphere with random points
|
|
* model: sphere coefficient [x,y,z,r] means x^2+y^2+z^2=r^2
|
|
* thr: generate the maximum distance from the point to the surface of sphere
|
|
* limit: the range of vector to make the generated sphere incomplete
|
|
**/
|
|
auto generateSphere = [](Mat &sphere_pts, const vector<float> &model, float thr, int num,
|
|
const vector<float> &limit) {
|
|
sphere_pts = cv::Mat(num, 3, CV_32F);
|
|
cv::RNG rng(0);
|
|
auto *sphere_pts_ptr = (float *) sphere_pts.data;
|
|
|
|
// Part of the points are generated for the specific model
|
|
// The other part of the points are used to increase the thickness of the sphere
|
|
int sphere_num = (int) (num / 1.5);
|
|
for (int i = 0; i < num; i++)
|
|
{
|
|
// Let r change then generate thickness
|
|
float r = i < sphere_num ? model[3] : rng.uniform(model[3] - thr, model[3] + thr);
|
|
// Generate a random vector and normalize it.
|
|
Vec3f vec(rng.uniform(limit[0], limit[1]), rng.uniform(limit[2], limit[3]),
|
|
rng.uniform(limit[4], limit[5]));
|
|
float l = sqrt(vec.dot(vec));
|
|
// Normalizes it to have a magnitude of r
|
|
vec /= l / r;
|
|
|
|
sphere_pts_ptr[3 * i] = model[0] + vec[0];
|
|
sphere_pts_ptr[3 * i + 1] = model[1] + vec[1];
|
|
sphere_pts_ptr[3 * i + 2] = model[2] + vec[2];
|
|
}
|
|
};
|
|
|
|
float distance_tolerance = 0.1f, radius_tolerance = 0.1f;
|
|
CheckDiffFunction sphereCheckDiff = [distance_tolerance, radius_tolerance](const Mat &a,
|
|
const Mat &b) -> bool {
|
|
Mat d = a - b;
|
|
auto d_ptr = (float *) d.data;
|
|
// Distance square between sphere centers
|
|
float d_square = d_ptr[0] * d_ptr[0] + d_ptr[1] * d_ptr[1] + d_ptr[2] * d_ptr[2];
|
|
// Difference square between radius of two spheres
|
|
float r_square = d_ptr[3] * d_ptr[3];
|
|
|
|
return d_square <= distance_tolerance * distance_tolerance &&
|
|
r_square <= radius_tolerance * radius_tolerance;
|
|
};
|
|
|
|
// Single sphere segmentation
|
|
for (int i = 0; i < models_num; i++)
|
|
{
|
|
generateSphere(generated_pts, models[i], thrs[i], pt_nums[i], limits[i]);
|
|
pt_cloud.push_back(generated_pts);
|
|
singleModelSegmentation(3000, sphereCheckDiff, i);
|
|
}
|
|
|
|
// Single sphere segmentation with constraint
|
|
for (int i = models_num / 2; i < models_num; i++)
|
|
{
|
|
float constraint_radius = models[i][3] + 0.5f;
|
|
// Radius constraint function
|
|
model_constraint = [constraint_radius](
|
|
const vector<double> &model) -> bool {
|
|
auto model_radius = (float) model[3];
|
|
return model_radius <= constraint_radius;
|
|
};
|
|
sacSegmentation->setCustomModelConstraints(model_constraint);
|
|
singleModelSegmentation(10000, sphereCheckDiff, i);
|
|
}
|
|
|
|
pt_cloud.release();
|
|
sacSegmentation->setCustomModelConstraints(nullptr);
|
|
sacSegmentation->setParallel(true);
|
|
|
|
// Multi-sphere segmentation
|
|
for (int i = 0; i < models_num; i++)
|
|
{
|
|
generateSphere(generated_pts, models[i], thrs[models_num - 1], pt_nums[i], limits[i]);
|
|
pt_cloud.push_back(generated_pts);
|
|
}
|
|
multiModelSegmentation(5000, sphereCheckDiff);
|
|
}
|
|
|
|
} // namespace
|
|
} // opencv_test
|