mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
194 lines
5.4 KiB
C
194 lines
5.4 KiB
C
/* dlarf.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublereal c_b4 = 1.;
|
|
static doublereal c_b5 = 0.;
|
|
static integer c__1 = 1;
|
|
|
|
/* Subroutine */ int dlarf_(char *side, integer *m, integer *n, doublereal *v,
|
|
integer *incv, doublereal *tau, doublereal *c__, integer *ldc,
|
|
doublereal *work)
|
|
{
|
|
/* System generated locals */
|
|
integer c_dim1, c_offset;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
logical applyleft;
|
|
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *);
|
|
integer lastc, lastv;
|
|
extern integer iladlc_(integer *, integer *, doublereal *, integer *),
|
|
iladlr_(integer *, integer *, doublereal *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLARF applies a real elementary reflector H to a real m by n matrix */
|
|
/* C, from either the left or the right. H is represented in the form */
|
|
|
|
/* H = I - tau * v * v' */
|
|
|
|
/* where tau is a real scalar and v is a real vector. */
|
|
|
|
/* If tau = 0, then H is taken to be the unit matrix. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* SIDE (input) CHARACTER*1 */
|
|
/* = 'L': form H * C */
|
|
/* = 'R': form C * H */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows of the matrix C. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns of the matrix C. */
|
|
|
|
/* V (input) DOUBLE PRECISION array, dimension */
|
|
/* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
|
|
/* or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
|
|
/* The vector v in the representation of H. V is not used if */
|
|
/* TAU = 0. */
|
|
|
|
/* INCV (input) INTEGER */
|
|
/* The increment between elements of v. INCV <> 0. */
|
|
|
|
/* TAU (input) DOUBLE PRECISION */
|
|
/* The value tau in the representation of H. */
|
|
|
|
/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
|
|
/* On entry, the m by n matrix C. */
|
|
/* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
|
|
/* or C * H if SIDE = 'R'. */
|
|
|
|
/* LDC (input) INTEGER */
|
|
/* The leading dimension of the array C. LDC >= max(1,M). */
|
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, dimension */
|
|
/* (N) if SIDE = 'L' */
|
|
/* or (M) if SIDE = 'R' */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
--v;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
applyleft = lsame_(side, "L");
|
|
lastv = 0;
|
|
lastc = 0;
|
|
if (*tau != 0.) {
|
|
/* Set up variables for scanning V. LASTV begins pointing to the end */
|
|
/* of V. */
|
|
if (applyleft) {
|
|
lastv = *m;
|
|
} else {
|
|
lastv = *n;
|
|
}
|
|
if (*incv > 0) {
|
|
i__ = (lastv - 1) * *incv + 1;
|
|
} else {
|
|
i__ = 1;
|
|
}
|
|
/* Look for the last non-zero row in V. */
|
|
while(lastv > 0 && v[i__] == 0.) {
|
|
--lastv;
|
|
i__ -= *incv;
|
|
}
|
|
if (applyleft) {
|
|
/* Scan for the last non-zero column in C(1:lastv,:). */
|
|
lastc = iladlc_(&lastv, n, &c__[c_offset], ldc);
|
|
} else {
|
|
/* Scan for the last non-zero row in C(:,1:lastv). */
|
|
lastc = iladlr_(m, &lastv, &c__[c_offset], ldc);
|
|
}
|
|
}
|
|
/* Note that lastc.eq.0 renders the BLAS operations null; no special */
|
|
/* case is needed at this level. */
|
|
if (applyleft) {
|
|
|
|
/* Form H * C */
|
|
|
|
if (lastv > 0) {
|
|
|
|
/* w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */
|
|
|
|
dgemv_("Transpose", &lastv, &lastc, &c_b4, &c__[c_offset], ldc, &
|
|
v[1], incv, &c_b5, &work[1], &c__1);
|
|
|
|
/* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */
|
|
|
|
d__1 = -(*tau);
|
|
dger_(&lastv, &lastc, &d__1, &v[1], incv, &work[1], &c__1, &c__[
|
|
c_offset], ldc);
|
|
}
|
|
} else {
|
|
|
|
/* Form C * H */
|
|
|
|
if (lastv > 0) {
|
|
|
|
/* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */
|
|
|
|
dgemv_("No transpose", &lastc, &lastv, &c_b4, &c__[c_offset], ldc,
|
|
&v[1], incv, &c_b5, &work[1], &c__1);
|
|
|
|
/* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */
|
|
|
|
d__1 = -(*tau);
|
|
dger_(&lastc, &lastv, &d__1, &work[1], &c__1, &v[1], incv, &c__[
|
|
c_offset], ldc);
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of DLARF */
|
|
|
|
} /* dlarf_ */
|