mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
252 lines
7.0 KiB
C
252 lines
7.0 KiB
C
/* sgelqf.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__3 = 3;
|
|
static integer c__2 = 2;
|
|
|
|
/* Subroutine */ int sgelqf_(integer *m, integer *n, real *a, integer *lda,
|
|
real *tau, real *work, integer *lwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
|
|
|
/* Local variables */
|
|
integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
|
|
extern /* Subroutine */ int sgelq2_(integer *, integer *, real *, integer
|
|
*, real *, real *, integer *), slarfb_(char *, char *, char *,
|
|
char *, integer *, integer *, integer *, real *, integer *, real *
|
|
, integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *);
|
|
extern /* Subroutine */ int slarft_(char *, char *, integer *, integer *,
|
|
real *, integer *, real *, real *, integer *);
|
|
integer ldwork, lwkopt;
|
|
logical lquery;
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SGELQF computes an LQ factorization of a real M-by-N matrix A: */
|
|
/* A = L * Q. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows of the matrix A. M >= 0. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
/* On entry, the M-by-N matrix A. */
|
|
/* On exit, the elements on and below the diagonal of the array */
|
|
/* contain the m-by-min(m,n) lower trapezoidal matrix L (L is */
|
|
/* lower triangular if m <= n); the elements above the diagonal, */
|
|
/* with the array TAU, represent the orthogonal matrix Q as a */
|
|
/* product of elementary reflectors (see Further Details). */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,M). */
|
|
|
|
/* TAU (output) REAL array, dimension (min(M,N)) */
|
|
/* The scalar factors of the elementary reflectors (see Further */
|
|
/* Details). */
|
|
|
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
|
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
|
|
/* LWORK (input) INTEGER */
|
|
/* The dimension of the array WORK. LWORK >= max(1,M). */
|
|
/* For optimum performance LWORK >= M*NB, where NB is the */
|
|
/* optimal blocksize. */
|
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* only calculates the optimal size of the WORK array, returns */
|
|
/* this value as the first entry of the WORK array, and no error */
|
|
/* message related to LWORK is issued by XERBLA. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* The matrix Q is represented as a product of elementary reflectors */
|
|
|
|
/* Q = H(k) . . . H(2) H(1), where k = min(m,n). */
|
|
|
|
/* Each H(i) has the form */
|
|
|
|
/* H(i) = I - tau * v * v' */
|
|
|
|
/* where tau is a real scalar, and v is a real vector with */
|
|
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */
|
|
/* and tau in TAU(i). */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
nb = ilaenv_(&c__1, "SGELQF", " ", m, n, &c_n1, &c_n1);
|
|
lwkopt = *m * nb;
|
|
work[1] = (real) lwkopt;
|
|
lquery = *lwork == -1;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -4;
|
|
} else if (*lwork < max(1,*m) && ! lquery) {
|
|
*info = -7;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SGELQF", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
k = min(*m,*n);
|
|
if (k == 0) {
|
|
work[1] = 1.f;
|
|
return 0;
|
|
}
|
|
|
|
nbmin = 2;
|
|
nx = 0;
|
|
iws = *m;
|
|
if (nb > 1 && nb < k) {
|
|
|
|
/* Determine when to cross over from blocked to unblocked code. */
|
|
|
|
/* Computing MAX */
|
|
i__1 = 0, i__2 = ilaenv_(&c__3, "SGELQF", " ", m, n, &c_n1, &c_n1);
|
|
nx = max(i__1,i__2);
|
|
if (nx < k) {
|
|
|
|
/* Determine if workspace is large enough for blocked code. */
|
|
|
|
ldwork = *m;
|
|
iws = ldwork * nb;
|
|
if (*lwork < iws) {
|
|
|
|
/* Not enough workspace to use optimal NB: reduce NB and */
|
|
/* determine the minimum value of NB. */
|
|
|
|
nb = *lwork / ldwork;
|
|
/* Computing MAX */
|
|
i__1 = 2, i__2 = ilaenv_(&c__2, "SGELQF", " ", m, n, &c_n1, &
|
|
c_n1);
|
|
nbmin = max(i__1,i__2);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nb >= nbmin && nb < k && nx < k) {
|
|
|
|
/* Use blocked code initially */
|
|
|
|
i__1 = k - nx;
|
|
i__2 = nb;
|
|
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
/* Computing MIN */
|
|
i__3 = k - i__ + 1;
|
|
ib = min(i__3,nb);
|
|
|
|
/* Compute the LQ factorization of the current block */
|
|
/* A(i:i+ib-1,i:n) */
|
|
|
|
i__3 = *n - i__ + 1;
|
|
sgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
|
|
1], &iinfo);
|
|
if (i__ + ib <= *m) {
|
|
|
|
/* Form the triangular factor of the block reflector */
|
|
/* H = H(i) H(i+1) . . . H(i+ib-1) */
|
|
|
|
i__3 = *n - i__ + 1;
|
|
slarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ *
|
|
a_dim1], lda, &tau[i__], &work[1], &ldwork);
|
|
|
|
/* Apply H to A(i+ib:m,i:n) from the right */
|
|
|
|
i__3 = *m - i__ - ib + 1;
|
|
i__4 = *n - i__ + 1;
|
|
slarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3,
|
|
&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
|
|
ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
|
|
1], &ldwork);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
i__ = 1;
|
|
}
|
|
|
|
/* Use unblocked code to factor the last or only block. */
|
|
|
|
if (i__ <= k) {
|
|
i__2 = *m - i__ + 1;
|
|
i__1 = *n - i__ + 1;
|
|
sgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
|
|
, &iinfo);
|
|
}
|
|
|
|
work[1] = (real) iws;
|
|
return 0;
|
|
|
|
/* End of SGELQF */
|
|
|
|
} /* sgelqf_ */
|