opencv/3rdparty/lapack/sormtr.c

296 lines
8.3 KiB
C

/* sormtr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
/* Subroutine */ int sormtr_(char *side, char *uplo, char *trans, integer *m,
integer *n, real *a, integer *lda, real *tau, real *c__, integer *ldc,
real *work, integer *lwork, integer *info)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i1, i2, nb, mi, ni, nq, nw;
logical left;
extern logical lsame_(char *, char *);
integer iinfo;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int sormql_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *, integer *);
integer lwkopt;
logical lquery;
extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SORMTR overwrites the general real M-by-N matrix C with */
/* SIDE = 'L' SIDE = 'R' */
/* TRANS = 'N': Q * C C * Q */
/* TRANS = 'T': Q**T * C C * Q**T */
/* where Q is a real orthogonal matrix of order nq, with nq = m if */
/* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of */
/* nq-1 elementary reflectors, as returned by SSYTRD: */
/* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); */
/* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q**T from the Left; */
/* = 'R': apply Q or Q**T from the Right. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A contains elementary reflectors */
/* from SSYTRD; */
/* = 'L': Lower triangle of A contains elementary reflectors */
/* from SSYTRD. */
/* TRANS (input) CHARACTER*1 */
/* = 'N': No transpose, apply Q; */
/* = 'T': Transpose, apply Q**T. */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* A (input) REAL array, dimension */
/* (LDA,M) if SIDE = 'L' */
/* (LDA,N) if SIDE = 'R' */
/* The vectors which define the elementary reflectors, as */
/* returned by SSYTRD. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. */
/* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. */
/* TAU (input) REAL array, dimension */
/* (M-1) if SIDE = 'L' */
/* (N-1) if SIDE = 'R' */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by SSYTRD. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If SIDE = 'L', LWORK >= max(1,N); */
/* if SIDE = 'R', LWORK >= max(1,M). */
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/* blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
upper = lsame_(uplo, "U");
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = *n;
} else {
nq = *n;
nw = *m;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! upper && ! lsame_(uplo, "L")) {
*info = -2;
} else if (! lsame_(trans, "N") && ! lsame_(trans,
"T")) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*lwork < max(1,nw) && ! lquery) {
*info = -12;
}
if (*info == 0) {
if (upper) {
if (left) {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *m - 1;
i__3 = *m - 1;
nb = ilaenv_(&c__1, "SORMQL", ch__1, &i__2, n, &i__3, &c_n1);
} else {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *n - 1;
i__3 = *n - 1;
nb = ilaenv_(&c__1, "SORMQL", ch__1, m, &i__2, &i__3, &c_n1);
}
} else {
if (left) {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *m - 1;
i__3 = *m - 1;
nb = ilaenv_(&c__1, "SORMQR", ch__1, &i__2, n, &i__3, &c_n1);
} else {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *n - 1;
i__3 = *n - 1;
nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &i__2, &i__3, &c_n1);
}
}
lwkopt = max(1,nw) * nb;
work[1] = (real) lwkopt;
}
if (*info != 0) {
i__2 = -(*info);
xerbla_("SORMTR", &i__2);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || nq == 1) {
work[1] = 1.f;
return 0;
}
if (left) {
mi = *m - 1;
ni = *n;
} else {
mi = *m;
ni = *n - 1;
}
if (upper) {
/* Q was determined by a call to SSYTRD with UPLO = 'U' */
i__2 = nq - 1;
sormql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, &
tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
} else {
/* Q was determined by a call to SSYTRD with UPLO = 'L' */
if (left) {
i1 = 2;
i2 = 1;
} else {
i1 = 1;
i2 = 2;
}
i__2 = nq - 1;
sormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
}
work[1] = (real) lwkopt;
return 0;
/* End of SORMTR */
} /* sormtr_ */