mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
500 lines
13 KiB
C++
500 lines
13 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Nghia Ho, nghiaho12@yahoo.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of OpenCV Foundation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
#define ACCURACY 0.00001
|
|
|
|
class CV_RotatedRectangleIntersectionTest: public cvtest::ArrayTest
|
|
{
|
|
public:
|
|
|
|
protected:
|
|
void run (int);
|
|
|
|
private:
|
|
void test1();
|
|
void test2();
|
|
void test3();
|
|
void test4();
|
|
void test5();
|
|
void test6();
|
|
void test7();
|
|
void test8();
|
|
void test9();
|
|
};
|
|
|
|
void CV_RotatedRectangleIntersectionTest::run(int)
|
|
{
|
|
// See pics/intersection.png for the scenarios we are testing
|
|
|
|
// Test the following scenarios:
|
|
// 1 - no intersection
|
|
// 2 - partial intersection, rectangle translated
|
|
// 3 - partial intersection, rectangle rotated 45 degree on the corner, forms a triangle intersection
|
|
// 4 - full intersection, rectangles of same size directly on top of each other
|
|
// 5 - partial intersection, rectangle on top rotated 45 degrees
|
|
// 6 - partial intersection, rectangle on top of different size
|
|
// 7 - full intersection, rectangle fully enclosed in the other
|
|
// 8 - partial intersection, rectangle corner just touching. point contact
|
|
// 9 - partial intersetion. rectangle side by side, line contact
|
|
|
|
test1();
|
|
test2();
|
|
test3();
|
|
test4();
|
|
test5();
|
|
test6();
|
|
test7();
|
|
test8();
|
|
test9();
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test1()
|
|
{
|
|
// no intersection
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 12.0f;
|
|
|
|
rect2.center.x = 10;
|
|
rect2.center.y = 10;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 2;
|
|
rect2.angle = 34.0f;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_NONE);
|
|
CV_Assert(vertices.empty());
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test2()
|
|
{
|
|
// partial intersection, rectangles translated
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 1;
|
|
rect2.center.y = 1;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 2;
|
|
rect2.angle = 0;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
CV_Assert(vertices.size() == 4);
|
|
|
|
vector<Point2f> possibleVertices(4);
|
|
|
|
possibleVertices[0] = Point2f(0.0f, 0.0f);
|
|
possibleVertices[1] = Point2f(1.0f, 1.0f);
|
|
possibleVertices[2] = Point2f(0.0f, 1.0f);
|
|
possibleVertices[3] = Point2f(1.0f, 0.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test3()
|
|
{
|
|
// partial intersection, rectangles rotated 45 degree on the corner, forms a triangle intersection
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 1;
|
|
rect2.center.y = 1;
|
|
rect2.size.width = sqrt(2.0f);
|
|
rect2.size.height = 20;
|
|
rect2.angle = 45.0f;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
CV_Assert(vertices.size() == 3);
|
|
|
|
vector<Point2f> possibleVertices(3);
|
|
|
|
possibleVertices[0] = Point2f(1.0f, 1.0f);
|
|
possibleVertices[1] = Point2f(0.0f, 1.0f);
|
|
possibleVertices[2] = Point2f(1.0f, 0.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test4()
|
|
{
|
|
// full intersection, rectangles of same size directly on top of each other
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 0;
|
|
rect2.center.y = 0;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 2;
|
|
rect2.angle = 0;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_FULL);
|
|
CV_Assert(vertices.size() == 4);
|
|
|
|
vector<Point2f> possibleVertices(4);
|
|
|
|
possibleVertices[0] = Point2f(-1.0f, 1.0f);
|
|
possibleVertices[1] = Point2f(1.0f, -1.0f);
|
|
possibleVertices[2] = Point2f(-1.0f, -1.0f);
|
|
possibleVertices[3] = Point2f(1.0f, 1.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test5()
|
|
{
|
|
// partial intersection, rectangle on top rotated 45 degrees
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 0;
|
|
rect2.center.y = 0;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 2;
|
|
rect2.angle = 45.0f;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
CV_Assert(vertices.size() == 8);
|
|
|
|
vector<Point2f> possibleVertices(8);
|
|
|
|
possibleVertices[0] = Point2f(-1.0f, -0.414214f);
|
|
possibleVertices[1] = Point2f(-1.0f, 0.414214f);
|
|
possibleVertices[2] = Point2f(-0.414214f, -1.0f);
|
|
possibleVertices[3] = Point2f(0.414214f, -1.0f);
|
|
possibleVertices[4] = Point2f(1.0f, -0.414214f);
|
|
possibleVertices[5] = Point2f(1.0f, 0.414214f);
|
|
possibleVertices[6] = Point2f(0.414214f, 1.0f);
|
|
possibleVertices[7] = Point2f(-0.414214f, 1.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test6()
|
|
{
|
|
// 6 - partial intersection, rectangle on top of different size
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 0;
|
|
rect2.center.y = 0;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 10;
|
|
rect2.angle = 0;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
CV_Assert(vertices.size() == 4);
|
|
|
|
vector<Point2f> possibleVertices(4);
|
|
|
|
possibleVertices[0] = Point2f(1.0f, 1.0f);
|
|
possibleVertices[1] = Point2f(1.0f, -1.0f);
|
|
possibleVertices[2] = Point2f(-1.0f, -1.0f);
|
|
possibleVertices[3] = Point2f(-1.0f, 1.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test7()
|
|
{
|
|
// full intersection, rectangle fully enclosed in the other
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 12.34f;
|
|
rect1.size.height = 56.78f;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 0;
|
|
rect2.center.y = 0;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 2;
|
|
rect2.angle = 0;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_FULL);
|
|
CV_Assert(vertices.size() == 4);
|
|
|
|
vector<Point2f> possibleVertices(4);
|
|
|
|
possibleVertices[0] = Point2f(1.0f, 1.0f);
|
|
possibleVertices[1] = Point2f(1.0f, -1.0f);
|
|
possibleVertices[2] = Point2f(-1.0f, -1.0f);
|
|
possibleVertices[3] = Point2f(-1.0f, 1.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test8()
|
|
{
|
|
// full intersection, rectangle fully enclosed in the other
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 2;
|
|
rect2.center.y = 2;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 2;
|
|
rect2.angle = 0;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
CV_Assert(vertices.size() == 1);
|
|
|
|
double dx = vertices[0].x - 1;
|
|
double dy = vertices[0].y - 1;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
CV_Assert(r < ACCURACY);
|
|
}
|
|
|
|
void CV_RotatedRectangleIntersectionTest::test9()
|
|
{
|
|
// full intersection, rectangle fully enclosed in the other
|
|
|
|
RotatedRect rect1, rect2;
|
|
|
|
rect1.center.x = 0;
|
|
rect1.center.y = 0;
|
|
rect1.size.width = 2;
|
|
rect1.size.height = 2;
|
|
rect1.angle = 0;
|
|
|
|
rect2.center.x = 2;
|
|
rect2.center.y = 0;
|
|
rect2.size.width = 2;
|
|
rect2.size.height = 123.45f;
|
|
rect2.angle = 0;
|
|
|
|
vector<Point2f> vertices;
|
|
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
CV_Assert(vertices.size() == 2);
|
|
|
|
vector<Point2f> possibleVertices(2);
|
|
|
|
possibleVertices[0] = Point2f(1.0f, 1.0f);
|
|
possibleVertices[1] = Point2f(1.0f, -1.0f);
|
|
|
|
for( size_t i = 0; i < vertices.size(); i++ )
|
|
{
|
|
double bestR = DBL_MAX;
|
|
|
|
for( size_t j = 0; j < possibleVertices.size(); j++ )
|
|
{
|
|
double dx = vertices[i].x - possibleVertices[j].x;
|
|
double dy = vertices[i].y - possibleVertices[j].y;
|
|
double r = sqrt(dx*dx + dy*dy);
|
|
|
|
bestR = std::min(bestR, r);
|
|
}
|
|
|
|
CV_Assert(bestR < ACCURACY);
|
|
}
|
|
}
|
|
|
|
TEST (Imgproc_RotatedRectangleIntersection, accuracy) { CV_RotatedRectangleIntersectionTest test; test.safe_run(); }
|