mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 00:39:13 +08:00
5ff1fababc
ml: refactored tests * use parametrized tests where appropriate * use stable theRNG in most tests * use modern style with EXPECT_/ASSERT_ checks
165 lines
5.6 KiB
C++
165 lines
5.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
using cv::ml::SVM;
|
|
using cv::ml::TrainData;
|
|
|
|
static Ptr<TrainData> makeRandomData(int datasize)
|
|
{
|
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
|
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
|
|
RNG &rng = cv::theRNG();
|
|
for (int i = 0; i < datasize; ++i)
|
|
{
|
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
|
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
|
|
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
|
|
responses.at<int>( i, 0 ) = response;
|
|
}
|
|
return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
|
|
}
|
|
|
|
static Ptr<TrainData> makeCircleData(int datasize, float scale_factor, float radius)
|
|
{
|
|
// Populate samples with data that can be split into two concentric circles
|
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
|
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
|
|
for (int i = 0; i < datasize; i+=2)
|
|
{
|
|
const float pi = 3.14159f;
|
|
const float angle_rads = (i/datasize) * pi;
|
|
const float x = radius * cos(angle_rads);
|
|
const float y = radius * cos(angle_rads);
|
|
|
|
// Larger circle
|
|
samples.at<float>( i, 0 ) = x;
|
|
samples.at<float>( i, 1 ) = y;
|
|
responses.at<int>( i, 0 ) = 0;
|
|
|
|
// Smaller circle
|
|
samples.at<float>( i + 1, 0 ) = x * scale_factor;
|
|
samples.at<float>( i + 1, 1 ) = y * scale_factor;
|
|
responses.at<int>( i + 1, 0 ) = 1;
|
|
}
|
|
return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
|
|
}
|
|
|
|
static Ptr<TrainData> makeRandomData2(int datasize)
|
|
{
|
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
|
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
|
|
RNG &rng = cv::theRNG();
|
|
for (int i = 0; i < datasize; ++i)
|
|
{
|
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
|
samples.at<float>( i, 0 ) = 0;
|
|
samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response;
|
|
responses.at<int>( i, 0 ) = response;
|
|
}
|
|
return TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
|
|
}
|
|
|
|
//==================================================================================================
|
|
|
|
TEST(ML_SVM, trainauto)
|
|
{
|
|
const int datasize = 100;
|
|
cv::Ptr<TrainData> data = makeRandomData(datasize);
|
|
ASSERT_TRUE(data);
|
|
cv::Ptr<SVM> svm = SVM::create();
|
|
ASSERT_TRUE(svm);
|
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
|
|
|
float test_data0[2] = {0.25f, 0.25f};
|
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
|
|
float result0 = svm->predict( test_point0 );
|
|
float test_data1[2] = {0.75f, 0.75f};
|
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
|
|
float result1 = svm->predict( test_point1 );
|
|
|
|
EXPECT_NEAR(result0, 0, 0.001);
|
|
EXPECT_NEAR(result1, 1, 0.001);
|
|
}
|
|
|
|
TEST(ML_SVM, trainauto_sigmoid)
|
|
{
|
|
const int datasize = 100;
|
|
const float scale_factor = 0.5;
|
|
const float radius = 2.0;
|
|
cv::Ptr<TrainData> data = makeCircleData(datasize, scale_factor, radius);
|
|
ASSERT_TRUE(data);
|
|
|
|
cv::Ptr<SVM> svm = SVM::create();
|
|
ASSERT_TRUE(svm);
|
|
svm->setKernel(SVM::SIGMOID);
|
|
svm->setGamma(10.0);
|
|
svm->setCoef0(-10.0);
|
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
|
|
|
float test_data0[2] = {radius, radius};
|
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
|
|
EXPECT_FLOAT_EQ(svm->predict( test_point0 ), 0);
|
|
|
|
float test_data1[2] = {scale_factor * radius, scale_factor * radius};
|
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
|
|
EXPECT_FLOAT_EQ(svm->predict( test_point1 ), 1);
|
|
}
|
|
|
|
TEST(ML_SVM, trainAuto_regression_5369)
|
|
{
|
|
const int datasize = 100;
|
|
Ptr<TrainData> data = makeRandomData2(datasize);
|
|
cv::Ptr<SVM> svm = SVM::create();
|
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
|
|
|
float test_data0[2] = {0.25f, 0.25f};
|
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
|
|
float result0 = svm->predict( test_point0 );
|
|
float test_data1[2] = {0.75f, 0.75f};
|
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
|
|
float result1 = svm->predict( test_point1 );
|
|
|
|
EXPECT_EQ(0., result0);
|
|
EXPECT_EQ(1., result1);
|
|
}
|
|
|
|
TEST(ML_SVM, getSupportVectors)
|
|
{
|
|
// Set up training data
|
|
int labels[4] = {1, -1, -1, -1};
|
|
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
|
|
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
|
|
Mat labelsMat(4, 1, CV_32SC1, labels);
|
|
|
|
Ptr<SVM> svm = SVM::create();
|
|
ASSERT_TRUE(svm);
|
|
svm->setType(SVM::C_SVC);
|
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
|
|
|
|
// Test retrieval of SVs and compressed SVs on linear SVM
|
|
svm->setKernel(SVM::LINEAR);
|
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
|
|
|
|
Mat sv = svm->getSupportVectors();
|
|
EXPECT_EQ(1, sv.rows); // by default compressed SV returned
|
|
sv = svm->getUncompressedSupportVectors();
|
|
EXPECT_EQ(3, sv.rows);
|
|
|
|
// Test retrieval of SVs and compressed SVs on non-linear SVM
|
|
svm->setKernel(SVM::POLY);
|
|
svm->setDegree(2);
|
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
|
|
|
|
sv = svm->getSupportVectors();
|
|
EXPECT_EQ(3, sv.rows);
|
|
sv = svm->getUncompressedSupportVectors();
|
|
EXPECT_EQ(0, sv.rows); // inapplicable for non-linear SVMs
|
|
}
|
|
|
|
}} // namespace
|