opencv/modules/3d/test/ocl/test_tsdf.cpp
Rostislav Vasilikhin bae9cef0b5
Merge pull request #20013 from savuor:rgbd_to_3d
Moving RGBD parts to 3d

* files moved from rgbd module in contrib repo

* header paths fixed

* perf file added

* lapack compilation fixed

* Rodrigues fixed in tests

* rgbd namespace removed

* headers fixed

* initial: rgbd files moved to 3d module

* rgbd updated from latest contrib master; less file duplication

* "std::" for sin(), cos(), etc.

* KinFu family -> back to contrib

* paths & namespaces

* removed duplicates, file version updated

* namespace kinfu removed from 3d module

* forgot to move test_colored_kinfu.cpp to contrib

* tests fixed: Params removed

* kinfu namespace removed

* it works without objc bindings

* include headers fixed

* tests: data paths fixed

* headers moved to/from public API

* Intr -> Matx33f in public API

* from kinfu_frame.hpp to utils.hpp

* submap: Intr -> Matx33f, HashTSDFVolume -> Volume; no extra headers

* no RgbdFrame class, no Mat fields & arg -> InputArray & pImpl

* get/setPyramidAt() instead of lots of methods

* Mat -> InputArray, TMat

* prepareFrameCache: refactored

* FastICPOdometry: +truncate threshold, +depthFactor; Mat/UMat choose

* Mat/UMat choose

* minor stuff related to headers

* (un)signed int warnings; compilation minor issues

* minors: submap: pyramids -> OdometryFrame; tests fix; FastICP minor; CV_EXPORTS_W for kinfu_frame.hpp

* FastICPOdometry: caching, rgbCameraMatrix

* OdometryFrame: pyramid%s% -> pyramids[]

* drop: rgbCameraMatrix from FastICP, RGB cache mode, makeColoredFrameFrom depth and all color-functions it calls

* makeFrameFromDepth, buildPyramidPointsNormals -> from public to internal utils.hpp

* minors

* FastICPOdometry: caching updated, init fields

* OdometryFrameImpl<UMat> fixed

* matrix building fixed; minors

* returning linemode back to contrib

* params.pose is Mat now

* precomp headers reorganized

* minor fixes, header paths, extra header removed

* minors: intrinsics -> utils.hpp; whitespaces; empty namespace; warning fixed

* moving declarations from/to headers

* internal headers reorganized (once again)

* fix include

* extra var fix

* fix include, fix (un)singed warning

* calibration.cpp: reverting back

* headers fix

* workaround to fix bindings

* temporary removed wrappers

* VolumeType -> VolumeParams

* (temporarily) removing wrappers for Volume and VolumeParams

* pyopencv_linemod -> contrib

* try to fix test_rgbd.py

* headers fixed

* fixing wrappers for rgbd

* fixing docs

* fixing rgbdPlane

* RgbdNormals wrapped

* wrap Volume and VolumeParams, VolumeType from enum to int

* DepthCleaner wrapped

* header folder "rgbd" -> "3d"

* fixing header path

* VolumeParams referenced by Ptr to support Python wrappers

* render...() fixed

* Ptr<VolumeParams> fixed

* makeVolume(... resolution -> [X, Y, Z])

* fixing static declaration

* try to fix ios objc bindings

* OdometryFrame::release...() removed

* fix for Odometry algos not supporting UMats: prepareFrameCache<>()

* preparePyramidMask(): fix to compile with TMat = UMat

* fixing debug guards

* removing references back; adding makeOdometryFrame() instead

* fixing OpenCL ICP hanging (some threads exit before reaching the barrier -> the rest threads hang)

* try to fix objc wrapper warnings; rerun builders

* VolumeType -> VolumeKind

* try to fix OCL bug

* prints removed

* indentation fixed

* headers fixed

* license fix

* WillowGarage licence notion removed, since it's in OpenCV's COPYRIGHT already

* KinFu license notion shortened

* debugging code removed

* include guards fixed

* KinFu license left in contrib module

* isValidDepth() moved to private header

* indentation fix

* indentation fix in src files

* RgbdNormals rewritten to pImpl

* minor

* DepthCleaner removed due to low code quality, no depthScale provided, no depth images found to be successfully filtered; can be replaced by bilateral filtering

* minors, indentation

* no "private" in public headers

* depthTo3d test moved from separate file

* Normals: setDepth() is useless, removing it

* RgbdPlane => findPlanes()

* rescaleDepth(): minor

* warpFrame: minor

* minor TODO

* all Odometries (except base abstract class) rewritten to pImpl

* FastICPOdometry now supports maxRotation and maxTranslation

* minor

* Odometry's children: now checks are done in setters

* get rid of protected members in Odometry class

* get/set cameraMatrix, transformType, maxRot/Trans, iters, minGradients -> OdometryImpl

* cameraMatrix: from double to float

* matrix exponentiation: Eigen -> dual quaternions

* Odometry evaluation fixed to reuse existing code

* "small" macro fixed by undef

* pixNorm is calculated on CPU only now (and then uploads on GPU)

* test registration: no cvtest classes

* test RgbdNormals and findPlanes(): no cvtest classes

* test_rgbd.py: minor fix

* tests for Odometry: no cvtest classes; UMat tests; logging fixed

* more CV_OVERRIDE to overriden functions

* fixing nondependent names to dependent

* more to prev commit

* forgotten fixes: overriden functions, (non)dependent names

* FastICPOdometry: fix UMat support when OpenCL is off

* try to fix compilation: missing namespaces

* Odometry: static const-mimicking functions to internal constants

* forgotten change to prev commit

* more forgotten fixes

* do not expose "submap.hpp" by default

* in-class enums: give names, CamelCase, int=>enums; minors

* namespaces, underscores, String

* std::map is used by pose graph, adding it

* compute()'s signature fixed, computeImpl()'s too

* RgbdNormals: Mat -> InputArray

* depth.hpp: Mat -> InputArray

* cameraMatrix: Matx33f -> InputArray + default value + checks

* "details" headers are not visible by default

* TSDF tests: rearranging checks

* cameraMatrix: no (realistic) default value

* renderPointsNormals*(): no wrappers for them

* debug: assert on empty frame in TSDF tests

* debugging code for TSDF GPU

* debug from integrate to raycast

* no (non-zero) default camera matrix anymore

* drop debugging code (does not help)

* try to fix TSDF GPU: constant -> global const ptr
2021-08-22 13:18:45 +00:00

525 lines
16 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace opencv_test {
namespace {
using namespace cv;
/** Reprojects screen point to camera space given z coord. */
struct Reprojector
{
Reprojector() {}
inline Reprojector(Matx33f intr)
{
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
cx = intr(0, 2), cy = intr(1, 2);
}
template<typename T>
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
{
T x = p.z * (p.x - cx) * fxinv;
T y = p.z * (p.y - cy) * fyinv;
return cv::Point3_<T>(x, y, p.z);
}
float fxinv, fyinv, cx, cy;
};
template<class Scene>
struct RenderInvoker : ParallelLoopBody
{
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
Reprojector _reproj, float _depthFactor, bool _onlySemisphere)
: ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor),
onlySemisphere(_onlySemisphere)
{ }
virtual void operator ()(const cv::Range& r) const
{
for (int y = r.start; y < r.end; y++)
{
float* frameRow = frame[y];
for (int x = 0; x < frame.cols; x++)
{
float pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
float xyt = 1.f / (screenVec.x * screenVec.x +
screenVec.y * screenVec.y + 1.f);
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = -dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for (int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir * t;
float d = Scene::map(p, onlySemisphere);
if (d < 0.000001f)
{
float depth = std::sqrt(t * t * xyt);
pix = depth * depthFactor;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<float>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
bool onlySemisphere;
};
struct Scene
{
virtual ~Scene() {}
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere);
virtual Mat depth(Affine3f pose) = 0;
virtual std::vector<Affine3f> getPoses() = 0;
};
struct SemisphereScene : Scene
{
const int framesPerCycle = 72;
const float nCycles = 0.25f;
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f));
Size frameSize;
Matx33f intr;
float depthFactor;
bool onlySemisphere;
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere)
{ }
static float map(Point3f p, bool onlySemisphere)
{
float plane = p.y + 0.5f;
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f);
float sphereRadius = 0.5f;
float sphere = (float)cv::norm(spherePose) - sphereRadius;
float sphereMinusBox = sphere;
float subSphereRadius = 0.05f;
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
float res;
if (!onlySemisphere)
res = min({ sphereMinusBox, subSphere, plane });
else
res = sphereMinusBox;
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for (int i = 0; i < framesPerCycle * nCycles; i++)
{
float angle = (float)(CV_2PI * i / framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle);
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
startPose.translation()[1],
startPose.translation()[2] * cos(angle)));
poses.push_back(pose);
}
return poses;
}
};
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere)
{
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere);
}
// this is a temporary solution
// ----------------------------
typedef cv::Vec4f ptype;
typedef cv::Mat_< ptype > Points;
typedef Points Normals;
typedef Size2i Size;
template<int p>
inline float specPow(float x)
{
if (p % 2 == 0)
{
float v = specPow<p / 2>(x);
return v * v;
}
else
{
float v = specPow<(p - 1) / 2>(x);
return v * v * x;
}
}
template<>
inline float specPow<0>(float /*x*/)
{
return 1.f;
}
template<>
inline float specPow<1>(float x)
{
return x;
}
inline cv::Vec3f fromPtype(const ptype& x)
{
return cv::Vec3f(x[0], x[1], x[2]);
}
inline Point3f normalize(const Vec3f& v)
{
double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
return v * (nv ? 1. / nv : 0.);
}
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose)
{
Size sz = _points.size();
image.create(sz, CV_8UC4);
Points points = _points.getMat();
Normals normals = _normals.getMat();
Mat_<Vec4b> img = image.getMat();
Range range(0, sz.height);
const int nstripes = -1;
parallel_for_(range, [&](const Range&)
{
for (int y = range.start; y < range.end; y++)
{
Vec4b* imgRow = img[y];
const ptype* ptsRow = points[y];
const ptype* nrmRow = normals[y];
for (int x = 0; x < sz.width; x++)
{
Point3f p = fromPtype(ptsRow[x]);
Point3f n = fromPtype(nrmRow[x]);
Vec4b color;
if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z))
{
color = Vec4b(0, 32, 0, 0);
}
else
{
const float Ka = 0.3f; //ambient coeff
const float Kd = 0.5f; //diffuse coeff
const float Ks = 0.2f; //specular coeff
const int sp = 20; //specular power
const float Ax = 1.f; //ambient color, can be RGB
const float Dx = 1.f; //diffuse color, can be RGB
const float Sx = 1.f; //specular color, can be RGB
const float Lx = 1.f; //light color
Point3f l = normalize(lightPose.translation() - Vec3f(p));
Point3f v = normalize(-Vec3f(p));
Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l));
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) +
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f);
color = Vec4b(ix, ix, ix, 0);
}
imgRow[x] = color;
}
}
}, nstripes);
}
// ----------------------------
static const bool display = false;
static const bool parallelCheck = false;
class Settings
{
public:
float depthFactor;
Matx33f intr;
Size frameSize;
Vec3f lightPose;
Ptr<Volume> volume;
Ptr<Scene> scene;
std::vector<Affine3f> poses;
Settings(bool useHashTSDF, bool onlySemisphere)
{
frameSize = Size(640, 480);
float fx, fy, cx, cy;
fx = fy = 525.f;
cx = frameSize.width / 2 - 0.5f;
cy = frameSize.height / 2 - 0.5f;
intr = Matx33f(fx, 0, cx,
0, fy, cy,
0, 0, 1);
// 5000 for the 16-bit PNG files
// 1 for the 32-bit float images in the ROS bag files
depthFactor = 5000;
Vec3i volumeDims = Vec3i::all(512); //number of voxels
float volSize = 3.f;
float voxelSize = volSize / 512.f; //meters
// default pose of volume cube
Affine3f volumePose = Affine3f().translate(Vec3f(-volSize / 2.f, -volSize / 2.f, 0.5f));
float tsdf_trunc_dist = 7 * voxelSize; // about 0.04f in meters
int tsdf_max_weight = 64; //frames
float raycast_step_factor = 0.25f; //in voxel sizes
// gradient delta factor is fixed at 1.0f and is not used
//p.gradient_delta_factor = 0.5f; //in voxel sizes
//p.lightPose = p.volume_pose.translation()/4; //meters
lightPose = Vec3f::all(0.f); //meters
// depth truncation is not used by default but can be useful in some scenes
float truncateThreshold = 0.f; //meters
VolumeParams::VolumeKind volumeKind = VolumeParams::VolumeKind::TSDF;
if (useHashTSDF)
{
volumeKind = VolumeParams::VolumeKind::HASHTSDF;
truncateThreshold = 4.f;
}
else
{
volSize = 3.f;
volumeDims = Vec3i::all(128); //number of voxels
voxelSize = volSize / 128.f;
tsdf_trunc_dist = 2 * voxelSize; // 0.04f in meters
raycast_step_factor = 0.75f; //in voxel sizes
}
volume = makeVolume(volumeKind, voxelSize, volumePose.matrix,
raycast_step_factor, tsdf_trunc_dist, tsdf_max_weight,
truncateThreshold, volumeDims[0], volumeDims[1], volumeDims[2]);
scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere);
poses = scene->getPoses();
}
};
void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose)
{
Mat image;
patchNaNs(points);
imshow("depth", depth * (1.f / depthFactor / 4.f));
renderPointsNormals(points, normals, image, lightPose);
imshow("render", image);
waitKey(2000);
}
void normalsCheck(Mat normals)
{
Vec4f vector;
for (auto pvector = normals.begin<Vec4f>(); pvector < normals.end<Vec4f>(); pvector++)
{
vector = *pvector;
if (!cvIsNaN(vector[0]))
{
float length = vector[0] * vector[0] +
vector[1] * vector[1] +
vector[2] * vector[2];
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1";
}
}
}
int counterOfValid(Mat points)
{
Vec4f* v;
int i, j;
int count = 0;
for (i = 0; i < points.rows; ++i)
{
v = (points.ptr<Vec4f>(i));
for (j = 0; j < points.cols; ++j)
{
if ((v[j])[0] != 0 ||
(v[j])[1] != 0 ||
(v[j])[2] != 0)
{
count++;
}
}
}
return count;
}
void normal_test(bool isHashTSDF, bool isRaycast, bool isFetchPointsNormals, bool isFetchNormals)
{
Settings settings(isHashTSDF, false);
Mat depth = settings.scene->depth(settings.poses[0]);
UMat udepth;
depth.copyTo(udepth);
UMat upoints, unormals, utmpnormals;
UMat unewPoints, unewNormals;
Mat points, normals;
AccessFlag af = ACCESS_READ;
settings.volume->integrate(udepth, settings.depthFactor, settings.poses[0].matrix, settings.intr);
if (isRaycast)
{
settings.volume->raycast(settings.poses[0].matrix, settings.intr, settings.frameSize, upoints, unormals);
}
if (isFetchPointsNormals)
{
settings.volume->fetchPointsNormals(upoints, unormals);
}
if (isFetchNormals)
{
settings.volume->fetchPointsNormals(upoints, utmpnormals);
settings.volume->fetchNormals(upoints, unormals);
}
normals = unormals.getMat(af);
points = upoints.getMat(af);
auto normalCheck = [](Vec4f& vector, const int*)
{
if (!cvIsNaN(vector[0]))
{
float length = vector[0] * vector[0] +
vector[1] * vector[1] +
vector[2] * vector[2];
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1";
}
};
if (parallelCheck)
normals.forEach<Vec4f>(normalCheck);
else
normalsCheck(normals);
if (isRaycast && display)
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
if (isRaycast)
{
settings.volume->raycast(settings.poses[17].matrix, settings.intr, settings.frameSize, unewPoints, unewNormals);
normals = unewNormals.getMat(af);
points = unewPoints.getMat(af);
normalsCheck(normals);
if (parallelCheck)
normals.forEach<Vec4f>(normalCheck);
else
normalsCheck(normals);
if (display)
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
}
}
void valid_points_test(bool isHashTSDF)
{
Settings settings(isHashTSDF, true);
Mat depth = settings.scene->depth(settings.poses[0]);
UMat udepth;
depth.copyTo(udepth);
UMat upoints, unormals, unewPoints, unewNormals;
AccessFlag af = ACCESS_READ;
Mat points, normals;
int anfas, profile;
settings.volume->integrate(udepth, settings.depthFactor, settings.poses[0].matrix, settings.intr);
settings.volume->raycast(settings.poses[0].matrix, settings.intr, settings.frameSize, upoints, unormals);
normals = unormals.getMat(af);
points = upoints.getMat(af);
patchNaNs(points);
anfas = counterOfValid(points);
ASSERT_NE(anfas, 0) << "There is no points in anfas";
if (display)
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
settings.volume->raycast(settings.poses[17].matrix, settings.intr, settings.frameSize, unewPoints, unewNormals);
normals = unewNormals.getMat(af);
points = unewPoints.getMat(af);
patchNaNs(points);
profile = counterOfValid(points);
ASSERT_NE(profile, 0) << "There is no points in profile";
// TODO: why profile == 2*anfas ?
float percentValidity = float(anfas) / float(profile);
ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")";
if (display)
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
}
TEST(TSDF_GPU, raycast_normals) { normal_test(false, true, false, false); }
TEST(TSDF_GPU, fetch_points_normals) { normal_test(false, false, true, false); }
TEST(TSDF_GPU, fetch_normals) { normal_test(false, false, false, true); }
TEST(TSDF_GPU, valid_points) { valid_points_test(false); }
TEST(HashTSDF_GPU, raycast_normals) { normal_test(true, true, false, false); }
TEST(HashTSDF_GPU, fetch_points_normals) { normal_test(true, false, true, false); }
TEST(HashTSDF_GPU, fetch_normals) { normal_test(true, false, false, true); }
TEST(HashTSDF_GPU, valid_points) { valid_points_test(true); }
}
} // namespace
#endif