opencv/modules/dnn/src/caffe/caffe_io.cpp
Dmitry Kurtaev 4ec456f0a0 Custom layers for deep learning networks (#11129)
* Custom deep learning layers support

* Stack custom deep learning layers
2018-04-24 14:59:59 +03:00

1176 lines
45 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*M///////////////////////////////////////////////////////////////////////////////////////
//COPYRIGHT
//
//All contributions by the University of California:
//Copyright (c) 2014, The Regents of the University of California (Regents)
//All rights reserved.
//
//All other contributions:
//Copyright (c) 2014, the respective contributors
//All rights reserved.
//
//Caffe uses a shared copyright model: each contributor holds copyright over
//their contributions to Caffe. The project versioning records all such
//contribution and copyright details. If a contributor wants to further mark
//their specific copyright on a particular contribution, they should indicate
//their copyright solely in the commit message of the change when it is
//committed.
//
//LICENSE
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions are met:
//
//1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
//ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
//WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
//DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
//ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
//(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
//(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
//SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//CONTRIBUTION AGREEMENT
//
//By contributing to the BVLC/caffe repository through pull-request, comment,
//or otherwise, the contributor releases their content to the
//license and copyright terms herein.
//
//M*/
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/text_format.h>
#include <opencv2/core.hpp>
#include <map>
#include <string>
#include <fstream>
#include <vector>
#include "caffe_io.hpp"
#include "glog_emulator.hpp"
namespace cv {
namespace dnn {
using std::string;
using std::map;
using namespace caffe;
using namespace ::google::protobuf;
using namespace ::google::protobuf::io;
// Return true iff the net is not the current version.
bool NetNeedsUpgrade(const NetParameter& net_param);
// Return true iff any layer contains parameters specified using
// deprecated V0LayerParameter.
bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param);
// Perform all necessary transformations to upgrade a V0NetParameter into a
// NetParameter (including upgrading padding layers and LayerParameters).
bool UpgradeV0Net(const NetParameter& v0_net_param, NetParameter* net_param);
// Upgrade NetParameter with padding layers to pad-aware conv layers.
// For any padding layer, remove it and put its pad parameter in any layers
// taking its top blob as input.
// Error if any of these above layers are not-conv layers.
void UpgradeV0PaddingLayers(const NetParameter& param,
NetParameter* param_upgraded_pad);
// Upgrade a single V0LayerConnection to the V1LayerParameter format.
bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
V1LayerParameter* layer_param);
V1LayerParameter_LayerType UpgradeV0LayerType(const string& type);
// Return true iff any layer contains deprecated data transformation parameters.
bool NetNeedsDataUpgrade(const NetParameter& net_param);
// Perform all necessary transformations to upgrade old transformation fields
// into a TransformationParameter.
void UpgradeNetDataTransformation(NetParameter* net_param);
// Return true iff the Net contains any layers specified as V1LayerParameters.
bool NetNeedsV1ToV2Upgrade(const NetParameter& net_param);
// Perform all necessary transformations to upgrade a NetParameter with
// deprecated V1LayerParameters.
bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param);
bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param,
LayerParameter* layer_param);
const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type);
bool NetNeedsBatchNormUpgrade(const NetParameter& net_param);
void UpgradeNetBatchNorm(NetParameter* net_param);
// Check for deprecations and upgrade the NetParameter as needed.
bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param);
bool NetNeedsUpgrade(const NetParameter& net_param) {
return NetNeedsV0ToV1Upgrade(net_param) || NetNeedsV1ToV2Upgrade(net_param) ||
NetNeedsBatchNormUpgrade(net_param);
}
bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layers_size(); ++i) {
if (net_param.layers(i).has_layer()) {
return true;
}
}
return false;
}
bool NetNeedsV1ToV2Upgrade(const NetParameter& net_param) {
return net_param.layers_size() > 0;
}
bool UpgradeV0Net(const NetParameter& v0_net_param_padding_layers,
NetParameter* net_param) {
// First upgrade padding layers to padded conv layers.
NetParameter v0_net_param;
UpgradeV0PaddingLayers(v0_net_param_padding_layers, &v0_net_param);
// Now upgrade layer parameters.
bool is_fully_compatible = true;
net_param->Clear();
if (v0_net_param.has_name()) {
net_param->set_name(v0_net_param.name());
}
for (int i = 0; i < v0_net_param.layers_size(); ++i) {
is_fully_compatible &= UpgradeV0LayerParameter(v0_net_param.layers(i),
net_param->add_layers());
}
for (int i = 0; i < v0_net_param.input_size(); ++i) {
net_param->add_input(v0_net_param.input(i));
}
for (int i = 0; i < v0_net_param.input_dim_size(); ++i) {
net_param->add_input_dim(v0_net_param.input_dim(i));
}
if (v0_net_param.has_force_backward()) {
net_param->set_force_backward(v0_net_param.force_backward());
}
return is_fully_compatible;
}
void UpgradeV0PaddingLayers(const NetParameter& param,
NetParameter* param_upgraded_pad) {
// Copy everything other than the layers from the original param.
param_upgraded_pad->Clear();
param_upgraded_pad->CopyFrom(param);
param_upgraded_pad->clear_layers();
// Figure out which layer each bottom blob comes from.
map<string, int> blob_name_to_last_top_idx;
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
blob_name_to_last_top_idx[blob_name] = -1;
}
for (int i = 0; i < param.layers_size(); ++i) {
const V1LayerParameter& layer_connection = param.layers(i);
const V0LayerParameter& layer_param = layer_connection.layer();
// Add the layer to the new net, unless it's a padding layer.
if (layer_param.type() != "padding") {
param_upgraded_pad->add_layers()->CopyFrom(layer_connection);
}
for (int j = 0; j < layer_connection.bottom_size(); ++j) {
const string& blob_name = layer_connection.bottom(j);
if (blob_name_to_last_top_idx.find(blob_name) ==
blob_name_to_last_top_idx.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name << " to layer " << j;
}
const int top_idx = blob_name_to_last_top_idx[blob_name];
if (top_idx == -1) {
continue;
}
const V1LayerParameter& source_layer = param.layers(top_idx);
if (source_layer.layer().type() == "padding") {
// This layer has a padding layer as input -- check that it is a conv
// layer or a pooling layer and takes only one input. Also check that
// the padding layer input has only one input and one output. Other
// cases have undefined behavior in Caffe.
CHECK((layer_param.type() == "conv") || (layer_param.type() == "pool"))
<< "Padding layer input to "
"non-convolutional / non-pooling layer type "
<< layer_param.type();
CHECK_EQ(layer_connection.bottom_size(), 1)
<< "Conv Layer takes a single blob as input.";
CHECK_EQ(source_layer.bottom_size(), 1)
<< "Padding Layer takes a single blob as input.";
CHECK_EQ(source_layer.top_size(), 1)
<< "Padding Layer produces a single blob as output.";
int layer_index = param_upgraded_pad->layers_size() - 1;
param_upgraded_pad->mutable_layers(layer_index)->mutable_layer()
->set_pad(source_layer.layer().pad());
param_upgraded_pad->mutable_layers(layer_index)
->set_bottom(j, source_layer.bottom(0));
}
}
for (int j = 0; j < layer_connection.top_size(); ++j) {
const string& blob_name = layer_connection.top(j);
blob_name_to_last_top_idx[blob_name] = i;
}
}
}
bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection,
V1LayerParameter* layer_param) {
bool is_fully_compatible = true;
layer_param->Clear();
for (int i = 0; i < v0_layer_connection.bottom_size(); ++i) {
layer_param->add_bottom(v0_layer_connection.bottom(i));
}
for (int i = 0; i < v0_layer_connection.top_size(); ++i) {
layer_param->add_top(v0_layer_connection.top(i));
}
if (v0_layer_connection.has_layer()) {
const V0LayerParameter& v0_layer_param = v0_layer_connection.layer();
if (v0_layer_param.has_name()) {
layer_param->set_name(v0_layer_param.name());
}
const string& type = v0_layer_param.type();
if (v0_layer_param.has_type()) {
layer_param->set_type(UpgradeV0LayerType(type));
}
for (int i = 0; i < v0_layer_param.blobs_size(); ++i) {
layer_param->add_blobs()->CopyFrom(v0_layer_param.blobs(i));
}
for (int i = 0; i < v0_layer_param.blobs_lr_size(); ++i) {
layer_param->add_blobs_lr(v0_layer_param.blobs_lr(i));
}
for (int i = 0; i < v0_layer_param.weight_decay_size(); ++i) {
layer_param->add_weight_decay(v0_layer_param.weight_decay(i));
}
if (v0_layer_param.has_num_output()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->set_num_output(
v0_layer_param.num_output());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->set_num_output(
v0_layer_param.num_output());
} else {
LOG(ERROR) << "Unknown parameter num_output for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_biasterm()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->set_bias_term(
v0_layer_param.biasterm());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->set_bias_term(
v0_layer_param.biasterm());
} else {
LOG(ERROR) << "Unknown parameter biasterm for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_weight_filler()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->
mutable_weight_filler()->CopyFrom(v0_layer_param.weight_filler());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->
mutable_weight_filler()->CopyFrom(v0_layer_param.weight_filler());
} else {
LOG(ERROR) << "Unknown parameter weight_filler for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_bias_filler()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->
mutable_bias_filler()->CopyFrom(v0_layer_param.bias_filler());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->
mutable_bias_filler()->CopyFrom(v0_layer_param.bias_filler());
} else {
LOG(ERROR) << "Unknown parameter bias_filler for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_pad()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->add_pad(v0_layer_param.pad());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_pad(v0_layer_param.pad());
} else {
LOG(ERROR) << "Unknown parameter pad for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_kernelsize()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->add_kernel_size(
v0_layer_param.kernelsize());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_kernel_size(
v0_layer_param.kernelsize());
} else {
LOG(ERROR) << "Unknown parameter kernelsize for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_group()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->set_group(
v0_layer_param.group());
} else {
LOG(ERROR) << "Unknown parameter group for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_stride()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->add_stride(
v0_layer_param.stride());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_stride(
v0_layer_param.stride());
} else {
LOG(ERROR) << "Unknown parameter stride for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_pool()) {
if (type == "pool") {
V0LayerParameter_PoolMethod pool = v0_layer_param.pool();
switch (pool) {
case V0LayerParameter_PoolMethod_MAX:
layer_param->mutable_pooling_param()->set_pool(
PoolingParameter_PoolMethod_MAX);
break;
case V0LayerParameter_PoolMethod_AVE:
layer_param->mutable_pooling_param()->set_pool(
PoolingParameter_PoolMethod_AVE);
break;
case V0LayerParameter_PoolMethod_STOCHASTIC:
layer_param->mutable_pooling_param()->set_pool(
PoolingParameter_PoolMethod_STOCHASTIC);
break;
default:
LOG(ERROR) << "Unknown pool method " << pool;
is_fully_compatible = false;
}
} else {
LOG(ERROR) << "Unknown parameter pool for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_dropout_ratio()) {
if (type == "dropout") {
layer_param->mutable_dropout_param()->set_dropout_ratio(
v0_layer_param.dropout_ratio());
} else {
LOG(ERROR) << "Unknown parameter dropout_ratio for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_local_size()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_local_size(
v0_layer_param.local_size());
} else {
LOG(ERROR) << "Unknown parameter local_size for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_alpha()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_alpha(v0_layer_param.alpha());
} else {
LOG(ERROR) << "Unknown parameter alpha for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_beta()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_beta(v0_layer_param.beta());
} else {
LOG(ERROR) << "Unknown parameter beta for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_k()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_k(v0_layer_param.k());
} else {
LOG(ERROR) << "Unknown parameter k for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_source()) {
if (type == "data") {
layer_param->mutable_data_param()->set_source(v0_layer_param.source());
} else if (type == "hdf5_data") {
layer_param->mutable_hdf5_data_param()->set_source(
v0_layer_param.source());
} else if (type == "images") {
layer_param->mutable_image_data_param()->set_source(
v0_layer_param.source());
} else if (type == "window_data") {
layer_param->mutable_window_data_param()->set_source(
v0_layer_param.source());
} else if (type == "infogain_loss") {
layer_param->mutable_infogain_loss_param()->set_source(
v0_layer_param.source());
} else {
LOG(ERROR) << "Unknown parameter source for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_scale()) {
layer_param->mutable_transform_param()->
set_scale(v0_layer_param.scale());
}
if (v0_layer_param.has_meanfile()) {
layer_param->mutable_transform_param()->
set_mean_file(v0_layer_param.meanfile());
}
if (v0_layer_param.has_batchsize()) {
if (type == "data") {
layer_param->mutable_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else if (type == "hdf5_data") {
layer_param->mutable_hdf5_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else if (type == "images") {
layer_param->mutable_image_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else if (type == "window_data") {
layer_param->mutable_window_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else {
LOG(ERROR) << "Unknown parameter batchsize for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_cropsize()) {
layer_param->mutable_transform_param()->
set_crop_size(v0_layer_param.cropsize());
}
if (v0_layer_param.has_mirror()) {
layer_param->mutable_transform_param()->
set_mirror(v0_layer_param.mirror());
}
if (v0_layer_param.has_rand_skip()) {
if (type == "data") {
layer_param->mutable_data_param()->set_rand_skip(
v0_layer_param.rand_skip());
} else if (type == "images") {
layer_param->mutable_image_data_param()->set_rand_skip(
v0_layer_param.rand_skip());
} else {
LOG(ERROR) << "Unknown parameter rand_skip for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_shuffle_images()) {
if (type == "images") {
layer_param->mutable_image_data_param()->set_shuffle(
v0_layer_param.shuffle_images());
} else {
LOG(ERROR) << "Unknown parameter shuffle for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_new_height()) {
if (type == "images") {
layer_param->mutable_image_data_param()->set_new_height(
v0_layer_param.new_height());
} else {
LOG(ERROR) << "Unknown parameter new_height for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_new_width()) {
if (type == "images") {
layer_param->mutable_image_data_param()->set_new_width(
v0_layer_param.new_width());
} else {
LOG(ERROR) << "Unknown parameter new_width for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_concat_dim()) {
if (type == "concat") {
layer_param->mutable_concat_param()->set_concat_dim(
v0_layer_param.concat_dim());
} else {
LOG(ERROR) << "Unknown parameter concat_dim for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_fg_threshold()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_fg_threshold(
v0_layer_param.det_fg_threshold());
} else {
LOG(ERROR) << "Unknown parameter det_fg_threshold for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_bg_threshold()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_bg_threshold(
v0_layer_param.det_bg_threshold());
} else {
LOG(ERROR) << "Unknown parameter det_bg_threshold for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_fg_fraction()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_fg_fraction(
v0_layer_param.det_fg_fraction());
} else {
LOG(ERROR) << "Unknown parameter det_fg_fraction for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_context_pad()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_context_pad(
v0_layer_param.det_context_pad());
} else {
LOG(ERROR) << "Unknown parameter det_context_pad for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_crop_mode()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_crop_mode(
v0_layer_param.det_crop_mode());
} else {
LOG(ERROR) << "Unknown parameter det_crop_mode for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_hdf5_output_param()) {
if (type == "hdf5_output") {
layer_param->mutable_hdf5_output_param()->CopyFrom(
v0_layer_param.hdf5_output_param());
} else {
LOG(ERROR) << "Unknown parameter hdf5_output_param for layer type "
<< type;
is_fully_compatible = false;
}
}
}
return is_fully_compatible;
}
V1LayerParameter_LayerType UpgradeV0LayerType(const string& type) {
if (type == "accuracy") {
return V1LayerParameter_LayerType_ACCURACY;
} else if (type == "bnll") {
return V1LayerParameter_LayerType_BNLL;
} else if (type == "concat") {
return V1LayerParameter_LayerType_CONCAT;
} else if (type == "conv") {
return V1LayerParameter_LayerType_CONVOLUTION;
} else if (type == "data") {
return V1LayerParameter_LayerType_DATA;
} else if (type == "dropout") {
return V1LayerParameter_LayerType_DROPOUT;
} else if (type == "euclidean_loss") {
return V1LayerParameter_LayerType_EUCLIDEAN_LOSS;
} else if (type == "flatten") {
return V1LayerParameter_LayerType_FLATTEN;
} else if (type == "hdf5_data") {
return V1LayerParameter_LayerType_HDF5_DATA;
} else if (type == "hdf5_output") {
return V1LayerParameter_LayerType_HDF5_OUTPUT;
} else if (type == "im2col") {
return V1LayerParameter_LayerType_IM2COL;
} else if (type == "images") {
return V1LayerParameter_LayerType_IMAGE_DATA;
} else if (type == "infogain_loss") {
return V1LayerParameter_LayerType_INFOGAIN_LOSS;
} else if (type == "innerproduct") {
return V1LayerParameter_LayerType_INNER_PRODUCT;
} else if (type == "lrn") {
return V1LayerParameter_LayerType_LRN;
} else if (type == "multinomial_logistic_loss") {
return V1LayerParameter_LayerType_MULTINOMIAL_LOGISTIC_LOSS;
} else if (type == "pool") {
return V1LayerParameter_LayerType_POOLING;
} else if (type == "relu") {
return V1LayerParameter_LayerType_RELU;
} else if (type == "sigmoid") {
return V1LayerParameter_LayerType_SIGMOID;
} else if (type == "softmax") {
return V1LayerParameter_LayerType_SOFTMAX;
} else if (type == "softmax_loss") {
return V1LayerParameter_LayerType_SOFTMAX_LOSS;
} else if (type == "split") {
return V1LayerParameter_LayerType_SPLIT;
} else if (type == "tanh") {
return V1LayerParameter_LayerType_TANH;
} else if (type == "window_data") {
return V1LayerParameter_LayerType_WINDOW_DATA;
} else {
LOG(FATAL) << "Unknown layer name: " << type;
return V1LayerParameter_LayerType_NONE;
}
}
bool NetNeedsDataUpgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layers_size(); ++i) {
if (net_param.layers(i).type() == V1LayerParameter_LayerType_DATA) {
DataParameter layer_param = net_param.layers(i).data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == V1LayerParameter_LayerType_IMAGE_DATA) {
ImageDataParameter layer_param = net_param.layers(i).image_data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == V1LayerParameter_LayerType_WINDOW_DATA) {
WindowDataParameter layer_param = net_param.layers(i).window_data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
}
return false;
}
#define CONVERT_LAYER_TRANSFORM_PARAM(TYPE, Name, param_name) \
do { \
if (net_param->layers(i).type() == V1LayerParameter_LayerType_##TYPE) { \
Name##Parameter* layer_param = \
net_param->mutable_layers(i)->mutable_##param_name##_param(); \
TransformationParameter* transform_param = \
net_param->mutable_layers(i)->mutable_transform_param(); \
if (layer_param->has_scale()) { \
transform_param->set_scale(layer_param->scale()); \
layer_param->clear_scale(); \
} \
if (layer_param->has_mean_file()) { \
transform_param->set_mean_file(layer_param->mean_file()); \
layer_param->clear_mean_file(); \
} \
if (layer_param->has_crop_size()) { \
transform_param->set_crop_size(layer_param->crop_size()); \
layer_param->clear_crop_size(); \
} \
if (layer_param->has_mirror()) { \
transform_param->set_mirror(layer_param->mirror()); \
layer_param->clear_mirror(); \
} \
} \
} while (0)
void UpgradeNetDataTransformation(NetParameter* net_param) {
for (int i = 0; i < net_param->layers_size(); ++i) {
CONVERT_LAYER_TRANSFORM_PARAM(DATA, Data, data);
CONVERT_LAYER_TRANSFORM_PARAM(IMAGE_DATA, ImageData, image_data);
CONVERT_LAYER_TRANSFORM_PARAM(WINDOW_DATA, WindowData, window_data);
}
}
bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param) {
bool success = true;
if (NetNeedsV0ToV1Upgrade(*param)) {
// NetParameter was specified using the old style (V0LayerParameter); try to
// upgrade it.
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
<< "V0LayerParameter: " << param_file;
NetParameter original_param(*param);
if (!UpgradeV0Net(original_param, param)) {
success = false;
LOG(ERROR) << "Warning: had one or more problems upgrading "
<< "V0NetParameter to NetParameter (see above); continuing anyway.";
} else {
LOG(INFO) << "Successfully upgraded file specified using deprecated "
<< "V0LayerParameter";
}
LOG(ERROR) << "Note that future Caffe releases will not support "
<< "V0NetParameter; use ./build/tools/upgrade_net_proto_text for "
<< "prototxt and ./build/tools/upgrade_net_proto_binary for model "
<< "weights upgrade this and any other net protos to the new format.";
}
// NetParameter uses old style data transformation fields; try to upgrade it.
if (NetNeedsDataUpgrade(*param)) {
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
<< "transformation parameters: " << param_file;
UpgradeNetDataTransformation(param);
LOG(INFO) << "Successfully upgraded file specified using deprecated "
<< "data transformation parameters.";
LOG(ERROR) << "Note that future Caffe releases will only support "
<< "transform_param messages for transformation fields.";
}
if (NetNeedsV1ToV2Upgrade(*param)) {
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
<< "V1LayerParameter: " << param_file;
NetParameter original_param(*param);
if (!UpgradeV1Net(original_param, param)) {
success = false;
LOG(ERROR) << "Warning: had one or more problems upgrading "
<< "V1LayerParameter (see above); continuing anyway.";
} else {
LOG(INFO) << "Successfully upgraded file specified using deprecated "
<< "V1LayerParameter";
}
}
// NetParameter uses old style batch norm layers; try to upgrade it.
if (NetNeedsBatchNormUpgrade(*param)) {
LOG(INFO) << "Attempting to upgrade batch norm layers using deprecated "
<< "params: " << param_file;
UpgradeNetBatchNorm(param);
LOG(INFO) << "Successfully upgraded batch norm layers using deprecated "
<< "params.";
}
return success;
}
bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param) {
bool is_fully_compatible = true;
if (v1_net_param.layer_size() > 0) {
LOG(ERROR) << "Input NetParameter to be upgraded already specifies 'layer' "
<< "fields; these will be ignored for the upgrade.";
is_fully_compatible = false;
}
net_param->CopyFrom(v1_net_param);
net_param->clear_layers();
net_param->clear_layer();
for (int i = 0; i < v1_net_param.layers_size(); ++i) {
if (!UpgradeV1LayerParameter(v1_net_param.layers(i),
net_param->add_layer())) {
LOG(ERROR) << "Upgrade of input layer " << i << " failed.";
is_fully_compatible = false;
}
}
return is_fully_compatible;
}
bool NetNeedsBatchNormUpgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layer_size(); ++i) {
// Check if BatchNorm layers declare three parameters, as required by
// the previous BatchNorm layer definition.
if (net_param.layer(i).type() == "BatchNorm"
&& net_param.layer(i).param_size() == 3) {
return true;
}
}
return false;
}
void UpgradeNetBatchNorm(NetParameter* net_param) {
for (int i = 0; i < net_param->layer_size(); ++i) {
// Check if BatchNorm layers declare three parameters, as required by
// the previous BatchNorm layer definition.
if (net_param->layer(i).type() == "BatchNorm"
&& net_param->layer(i).param_size() == 3) {
net_param->mutable_layer(i)->clear_param();
}
}
}
bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param,
LayerParameter* layer_param) {
layer_param->Clear();
bool is_fully_compatible = true;
for (int i = 0; i < v1_layer_param.bottom_size(); ++i) {
layer_param->add_bottom(v1_layer_param.bottom(i));
}
for (int i = 0; i < v1_layer_param.top_size(); ++i) {
layer_param->add_top(v1_layer_param.top(i));
}
if (v1_layer_param.has_name()) {
layer_param->set_name(v1_layer_param.name());
}
for (int i = 0; i < v1_layer_param.include_size(); ++i) {
layer_param->add_include()->CopyFrom(v1_layer_param.include(i));
}
for (int i = 0; i < v1_layer_param.exclude_size(); ++i) {
layer_param->add_exclude()->CopyFrom(v1_layer_param.exclude(i));
}
if (v1_layer_param.has_type()) {
layer_param->set_type(UpgradeV1LayerType(v1_layer_param.type()));
}
for (int i = 0; i < v1_layer_param.blobs_size(); ++i) {
layer_param->add_blobs()->CopyFrom(v1_layer_param.blobs(i));
}
for (int i = 0; i < v1_layer_param.param_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
layer_param->mutable_param(i)->set_name(v1_layer_param.param(i));
}
ParamSpec_DimCheckMode mode;
for (int i = 0; i < v1_layer_param.blob_share_mode_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
switch (v1_layer_param.blob_share_mode(i)) {
case V1LayerParameter_DimCheckMode_STRICT:
mode = ParamSpec_DimCheckMode_STRICT;
break;
case V1LayerParameter_DimCheckMode_PERMISSIVE:
mode = ParamSpec_DimCheckMode_PERMISSIVE;
break;
default:
LOG(FATAL) << "Unknown blob_share_mode: "
<< v1_layer_param.blob_share_mode(i);
break;
}
layer_param->mutable_param(i)->set_share_mode(mode);
}
for (int i = 0; i < v1_layer_param.blobs_lr_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
layer_param->mutable_param(i)->set_lr_mult(v1_layer_param.blobs_lr(i));
}
for (int i = 0; i < v1_layer_param.weight_decay_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
layer_param->mutable_param(i)->set_decay_mult(
v1_layer_param.weight_decay(i));
}
for (int i = 0; i < v1_layer_param.loss_weight_size(); ++i) {
layer_param->add_loss_weight(v1_layer_param.loss_weight(i));
}
if (v1_layer_param.has_accuracy_param()) {
layer_param->mutable_accuracy_param()->CopyFrom(
v1_layer_param.accuracy_param());
}
if (v1_layer_param.has_argmax_param()) {
layer_param->mutable_argmax_param()->CopyFrom(
v1_layer_param.argmax_param());
}
if (v1_layer_param.has_concat_param()) {
layer_param->mutable_concat_param()->CopyFrom(
v1_layer_param.concat_param());
}
if (v1_layer_param.has_contrastive_loss_param()) {
layer_param->mutable_contrastive_loss_param()->CopyFrom(
v1_layer_param.contrastive_loss_param());
}
if (v1_layer_param.has_convolution_param()) {
layer_param->mutable_convolution_param()->CopyFrom(
v1_layer_param.convolution_param());
}
if (v1_layer_param.has_data_param()) {
layer_param->mutable_data_param()->CopyFrom(
v1_layer_param.data_param());
}
if (v1_layer_param.has_dropout_param()) {
layer_param->mutable_dropout_param()->CopyFrom(
v1_layer_param.dropout_param());
}
if (v1_layer_param.has_dummy_data_param()) {
layer_param->mutable_dummy_data_param()->CopyFrom(
v1_layer_param.dummy_data_param());
}
if (v1_layer_param.has_eltwise_param()) {
layer_param->mutable_eltwise_param()->CopyFrom(
v1_layer_param.eltwise_param());
}
if (v1_layer_param.has_exp_param()) {
layer_param->mutable_exp_param()->CopyFrom(
v1_layer_param.exp_param());
}
if (v1_layer_param.has_hdf5_data_param()) {
layer_param->mutable_hdf5_data_param()->CopyFrom(
v1_layer_param.hdf5_data_param());
}
if (v1_layer_param.has_hdf5_output_param()) {
layer_param->mutable_hdf5_output_param()->CopyFrom(
v1_layer_param.hdf5_output_param());
}
if (v1_layer_param.has_hinge_loss_param()) {
layer_param->mutable_hinge_loss_param()->CopyFrom(
v1_layer_param.hinge_loss_param());
}
if (v1_layer_param.has_image_data_param()) {
layer_param->mutable_image_data_param()->CopyFrom(
v1_layer_param.image_data_param());
}
if (v1_layer_param.has_infogain_loss_param()) {
layer_param->mutable_infogain_loss_param()->CopyFrom(
v1_layer_param.infogain_loss_param());
}
if (v1_layer_param.has_inner_product_param()) {
layer_param->mutable_inner_product_param()->CopyFrom(
v1_layer_param.inner_product_param());
}
if (v1_layer_param.has_lrn_param()) {
layer_param->mutable_lrn_param()->CopyFrom(
v1_layer_param.lrn_param());
}
if (v1_layer_param.has_memory_data_param()) {
layer_param->mutable_memory_data_param()->CopyFrom(
v1_layer_param.memory_data_param());
}
if (v1_layer_param.has_mvn_param()) {
layer_param->mutable_mvn_param()->CopyFrom(
v1_layer_param.mvn_param());
}
if (v1_layer_param.has_pooling_param()) {
layer_param->mutable_pooling_param()->CopyFrom(
v1_layer_param.pooling_param());
}
if (v1_layer_param.has_power_param()) {
layer_param->mutable_power_param()->CopyFrom(
v1_layer_param.power_param());
}
if (v1_layer_param.has_relu_param()) {
layer_param->mutable_relu_param()->CopyFrom(
v1_layer_param.relu_param());
}
if (v1_layer_param.has_sigmoid_param()) {
layer_param->mutable_sigmoid_param()->CopyFrom(
v1_layer_param.sigmoid_param());
}
if (v1_layer_param.has_softmax_param()) {
layer_param->mutable_softmax_param()->CopyFrom(
v1_layer_param.softmax_param());
}
if (v1_layer_param.has_slice_param()) {
layer_param->mutable_slice_param()->CopyFrom(
v1_layer_param.slice_param());
}
if (v1_layer_param.has_tanh_param()) {
layer_param->mutable_tanh_param()->CopyFrom(
v1_layer_param.tanh_param());
}
if (v1_layer_param.has_threshold_param()) {
layer_param->mutable_threshold_param()->CopyFrom(
v1_layer_param.threshold_param());
}
if (v1_layer_param.has_window_data_param()) {
layer_param->mutable_window_data_param()->CopyFrom(
v1_layer_param.window_data_param());
}
if (v1_layer_param.has_transform_param()) {
layer_param->mutable_transform_param()->CopyFrom(
v1_layer_param.transform_param());
}
if (v1_layer_param.has_loss_param()) {
layer_param->mutable_loss_param()->CopyFrom(
v1_layer_param.loss_param());
}
if (v1_layer_param.has_layer()) {
LOG(ERROR) << "Input NetParameter has V0 layer -- ignoring.";
is_fully_compatible = false;
}
return is_fully_compatible;
}
const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type) {
switch (type) {
case V1LayerParameter_LayerType_NONE:
return "";
case V1LayerParameter_LayerType_ABSVAL:
return "AbsVal";
case V1LayerParameter_LayerType_ACCURACY:
return "Accuracy";
case V1LayerParameter_LayerType_ARGMAX:
return "ArgMax";
case V1LayerParameter_LayerType_BNLL:
return "BNLL";
case V1LayerParameter_LayerType_CONCAT:
return "Concat";
case V1LayerParameter_LayerType_CONTRASTIVE_LOSS:
return "ContrastiveLoss";
case V1LayerParameter_LayerType_CONVOLUTION:
return "Convolution";
case V1LayerParameter_LayerType_DECONVOLUTION:
return "Deconvolution";
case V1LayerParameter_LayerType_DATA:
return "Data";
case V1LayerParameter_LayerType_DROPOUT:
return "Dropout";
case V1LayerParameter_LayerType_DUMMY_DATA:
return "DummyData";
case V1LayerParameter_LayerType_EUCLIDEAN_LOSS:
return "EuclideanLoss";
case V1LayerParameter_LayerType_ELTWISE:
return "Eltwise";
case V1LayerParameter_LayerType_EXP:
return "Exp";
case V1LayerParameter_LayerType_FLATTEN:
return "Flatten";
case V1LayerParameter_LayerType_HDF5_DATA:
return "HDF5Data";
case V1LayerParameter_LayerType_HDF5_OUTPUT:
return "HDF5Output";
case V1LayerParameter_LayerType_HINGE_LOSS:
return "HingeLoss";
case V1LayerParameter_LayerType_IM2COL:
return "Im2col";
case V1LayerParameter_LayerType_IMAGE_DATA:
return "ImageData";
case V1LayerParameter_LayerType_INFOGAIN_LOSS:
return "InfogainLoss";
case V1LayerParameter_LayerType_INNER_PRODUCT:
return "InnerProduct";
case V1LayerParameter_LayerType_LRN:
return "LRN";
case V1LayerParameter_LayerType_MEMORY_DATA:
return "MemoryData";
case V1LayerParameter_LayerType_MULTINOMIAL_LOGISTIC_LOSS:
return "MultinomialLogisticLoss";
case V1LayerParameter_LayerType_MVN:
return "MVN";
case V1LayerParameter_LayerType_POOLING:
return "Pooling";
case V1LayerParameter_LayerType_POWER:
return "Power";
case V1LayerParameter_LayerType_RELU:
return "ReLU";
case V1LayerParameter_LayerType_SIGMOID:
return "Sigmoid";
case V1LayerParameter_LayerType_SIGMOID_CROSS_ENTROPY_LOSS:
return "SigmoidCrossEntropyLoss";
case V1LayerParameter_LayerType_SILENCE:
return "Silence";
case V1LayerParameter_LayerType_SOFTMAX:
return "Softmax";
case V1LayerParameter_LayerType_SOFTMAX_LOSS:
return "SoftmaxWithLoss";
case V1LayerParameter_LayerType_SPLIT:
return "Split";
case V1LayerParameter_LayerType_SLICE:
return "Slice";
case V1LayerParameter_LayerType_TANH:
return "TanH";
case V1LayerParameter_LayerType_WINDOW_DATA:
return "WindowData";
case V1LayerParameter_LayerType_THRESHOLD:
return "Threshold";
default:
LOG(FATAL) << "Unknown V1LayerParameter layer type: " << type;
return "";
}
}
const int kProtoReadBytesLimit = INT_MAX; // Max size of 2 GB minus 1 byte.
bool ReadProtoFromBinary(ZeroCopyInputStream* input, Message *proto) {
CodedInputStream coded_input(input);
coded_input.SetTotalBytesLimit(kProtoReadBytesLimit, 536870912);
return proto->ParseFromCodedStream(&coded_input);
}
bool ReadProtoFromTextFile(const char* filename, Message* proto) {
std::ifstream fs(filename, std::ifstream::in);
CHECK(fs.is_open()) << "Can't open \"" << filename << "\"";
IstreamInputStream input(&fs);
return google::protobuf::TextFormat::Parser(true).Parse(&input, proto);
}
bool ReadProtoFromBinaryFile(const char* filename, Message* proto) {
std::ifstream fs(filename, std::ifstream::in | std::ifstream::binary);
CHECK(fs.is_open()) << "Can't open \"" << filename << "\"";
IstreamInputStream raw_input(&fs);
return ReadProtoFromBinary(&raw_input, proto);
}
bool ReadProtoFromTextBuffer(const char* data, size_t len, Message* proto) {
ArrayInputStream input(data, len);
return google::protobuf::TextFormat::Parse(&input, proto);
}
bool ReadProtoFromBinaryBuffer(const char* data, size_t len, Message* proto) {
ArrayInputStream raw_input(data, len);
return ReadProtoFromBinary(&raw_input, proto);
}
void ReadNetParamsFromTextFileOrDie(const char* param_file,
NetParameter* param) {
CHECK(ReadProtoFromTextFile(param_file, param))
<< "Failed to parse NetParameter file: " << param_file;
UpgradeNetAsNeeded(param_file, param);
}
void ReadNetParamsFromTextBufferOrDie(const char* data, size_t len,
NetParameter* param) {
CHECK(ReadProtoFromTextBuffer(data, len, param))
<< "Failed to parse NetParameter buffer";
UpgradeNetAsNeeded("memory buffer", param);
}
void ReadNetParamsFromBinaryFileOrDie(const char* param_file,
NetParameter* param) {
CHECK(ReadProtoFromBinaryFile(param_file, param))
<< "Failed to parse NetParameter file: " << param_file;
UpgradeNetAsNeeded(param_file, param);
}
void ReadNetParamsFromBinaryBufferOrDie(const char* data, size_t len,
NetParameter* param) {
CHECK(ReadProtoFromBinaryBuffer(data, len, param))
<< "Failed to parse NetParameter buffer";
UpgradeNetAsNeeded("memory buffer", param);
}
}
}
#endif