mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 20:42:41 +08:00
668 lines
23 KiB
C++
668 lines
23 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008,2019 Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2014, Itseez Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_imgproc.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
#include "sumpixels.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template <typename T, typename ST, typename QT>
|
|
struct Integral_SIMD
|
|
{
|
|
bool operator()(const T *, size_t,
|
|
ST *, size_t,
|
|
QT *, size_t,
|
|
ST *, size_t,
|
|
int, int, int) const
|
|
{
|
|
return false;
|
|
}
|
|
};
|
|
|
|
|
|
template <>
|
|
struct Integral_SIMD<uchar, double, double> {
|
|
Integral_SIMD() {};
|
|
|
|
|
|
bool operator()(const uchar *src, size_t _srcstep,
|
|
double *sum, size_t _sumstep,
|
|
double *sqsum, size_t _sqsumstep,
|
|
double *tilted, size_t _tiltedstep,
|
|
int width, int height, int cn) const
|
|
{
|
|
#if CV_TRY_AVX512_SKX
|
|
CV_UNUSED(_tiltedstep);
|
|
// TODO: Add support for 1 channel input (WIP)
|
|
if (CV_CPU_HAS_SUPPORT_AVX512_SKX && !tilted && (cn <= 4)){
|
|
opt_AVX512_SKX::calculate_integral_avx512(src, _srcstep, sum, _sumstep,
|
|
sqsum, _sqsumstep, width, height, cn);
|
|
return true;
|
|
}
|
|
#else
|
|
// Avoid warnings in some builds
|
|
CV_UNUSED(src); CV_UNUSED(_srcstep); CV_UNUSED(sum); CV_UNUSED(_sumstep);
|
|
CV_UNUSED(sqsum); CV_UNUSED(_sqsumstep); CV_UNUSED(tilted); CV_UNUSED(_tiltedstep);
|
|
CV_UNUSED(width); CV_UNUSED(height); CV_UNUSED(cn);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
};
|
|
|
|
#if CV_SIMD && CV_SIMD_WIDTH <= 64
|
|
|
|
template <>
|
|
struct Integral_SIMD<uchar, int, double>
|
|
{
|
|
Integral_SIMD() {}
|
|
|
|
bool operator()(const uchar * src, size_t _srcstep,
|
|
int * sum, size_t _sumstep,
|
|
double * sqsum, size_t,
|
|
int * tilted, size_t,
|
|
int width, int height, int cn) const
|
|
{
|
|
if (sqsum || tilted || cn != 1)
|
|
return false;
|
|
|
|
// the first iteration
|
|
memset(sum, 0, (width + 1) * sizeof(int));
|
|
|
|
// the others
|
|
for (int i = 0; i < height; ++i)
|
|
{
|
|
const uchar * src_row = src + _srcstep * i;
|
|
int * prev_sum_row = (int *)((uchar *)sum + _sumstep * i) + 1;
|
|
int * sum_row = (int *)((uchar *)sum + _sumstep * (i + 1)) + 1;
|
|
|
|
sum_row[-1] = 0;
|
|
|
|
v_int32 prev = vx_setzero_s32();
|
|
int j = 0;
|
|
for ( ; j + v_uint16::nlanes <= width; j += v_uint16::nlanes)
|
|
{
|
|
v_int16 el8 = v_reinterpret_as_s16(vx_load_expand(src_row + j));
|
|
v_int32 el4l, el4h;
|
|
#if CV_AVX2 && CV_SIMD_WIDTH == 32
|
|
__m256i vsum = _mm256_add_epi16(el8.val, _mm256_slli_si256(el8.val, 2));
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 4));
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 8));
|
|
__m256i shmask = _mm256_set1_epi32(7);
|
|
el4l.val = _mm256_add_epi32(_mm256_cvtepi16_epi32(_v256_extract_low(vsum)), prev.val);
|
|
el4h.val = _mm256_add_epi32(_mm256_cvtepi16_epi32(_v256_extract_high(vsum)), _mm256_permutevar8x32_epi32(el4l.val, shmask));
|
|
prev.val = _mm256_permutevar8x32_epi32(el4h.val, shmask);
|
|
#else
|
|
el8 += v_rotate_left<1>(el8);
|
|
el8 += v_rotate_left<2>(el8);
|
|
#if CV_SIMD_WIDTH >= 32
|
|
el8 += v_rotate_left<4>(el8);
|
|
#if CV_SIMD_WIDTH == 64
|
|
el8 += v_rotate_left<8>(el8);
|
|
#endif
|
|
#endif
|
|
v_expand(el8, el4l, el4h);
|
|
el4l += prev;
|
|
el4h += el4l;
|
|
|
|
prev = v_broadcast_element<v_int32::nlanes - 1>(el4h);
|
|
#endif
|
|
v_store(sum_row + j , el4l + vx_load(prev_sum_row + j ));
|
|
v_store(sum_row + j + v_int32::nlanes, el4h + vx_load(prev_sum_row + j + v_int32::nlanes));
|
|
}
|
|
|
|
for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < width; ++j)
|
|
sum_row[j] = (v += src_row[j]) + prev_sum_row[j];
|
|
}
|
|
vx_cleanup();
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct Integral_SIMD<uchar, float, double>
|
|
{
|
|
Integral_SIMD() {}
|
|
|
|
bool operator()(const uchar * src, size_t _srcstep,
|
|
float * sum, size_t _sumstep,
|
|
double * sqsum, size_t,
|
|
float * tilted, size_t,
|
|
int width, int height, int cn) const
|
|
{
|
|
if (sqsum || tilted || cn != 1)
|
|
return false;
|
|
|
|
// the first iteration
|
|
memset(sum, 0, (width + 1) * sizeof(int));
|
|
|
|
// the others
|
|
for (int i = 0; i < height; ++i)
|
|
{
|
|
const uchar * src_row = src + _srcstep * i;
|
|
float * prev_sum_row = (float *)((uchar *)sum + _sumstep * i) + 1;
|
|
float * sum_row = (float *)((uchar *)sum + _sumstep * (i + 1)) + 1;
|
|
|
|
sum_row[-1] = 0;
|
|
|
|
v_float32 prev = vx_setzero_f32();
|
|
int j = 0;
|
|
for (; j + v_uint16::nlanes <= width; j += v_uint16::nlanes)
|
|
{
|
|
v_int16 el8 = v_reinterpret_as_s16(vx_load_expand(src_row + j));
|
|
v_float32 el4l, el4h;
|
|
#if CV_AVX2 && CV_SIMD_WIDTH == 32
|
|
__m256i vsum = _mm256_add_epi16(el8.val, _mm256_slli_si256(el8.val, 2));
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 4));
|
|
vsum = _mm256_add_epi16(vsum, _mm256_slli_si256(vsum, 8));
|
|
__m256i shmask = _mm256_set1_epi32(7);
|
|
el4l.val = _mm256_add_ps(_mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_v256_extract_low(vsum))), prev.val);
|
|
el4h.val = _mm256_add_ps(_mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_v256_extract_high(vsum))), _mm256_permutevar8x32_ps(el4l.val, shmask));
|
|
prev.val = _mm256_permutevar8x32_ps(el4h.val, shmask);
|
|
#else
|
|
el8 += v_rotate_left<1>(el8);
|
|
el8 += v_rotate_left<2>(el8);
|
|
#if CV_SIMD_WIDTH >= 32
|
|
el8 += v_rotate_left<4>(el8);
|
|
#if CV_SIMD_WIDTH == 64
|
|
el8 += v_rotate_left<8>(el8);
|
|
#endif
|
|
#endif
|
|
v_int32 el4li, el4hi;
|
|
v_expand(el8, el4li, el4hi);
|
|
el4l = v_cvt_f32(el4li) + prev;
|
|
el4h = v_cvt_f32(el4hi) + el4l;
|
|
|
|
prev = v_broadcast_element<v_float32::nlanes - 1>(el4h);
|
|
#endif
|
|
v_store(sum_row + j , el4l + vx_load(prev_sum_row + j ));
|
|
v_store(sum_row + j + v_float32::nlanes, el4h + vx_load(prev_sum_row + j + v_float32::nlanes));
|
|
}
|
|
|
|
for (float v = sum_row[j - 1] - prev_sum_row[j - 1]; j < width; ++j)
|
|
sum_row[j] = (v += src_row[j]) + prev_sum_row[j];
|
|
}
|
|
vx_cleanup();
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
template<typename T, typename ST, typename QT>
|
|
void integral_( const T* src, size_t _srcstep, ST* sum, size_t _sumstep,
|
|
QT* sqsum, size_t _sqsumstep, ST* tilted, size_t _tiltedstep,
|
|
int width, int height, int cn )
|
|
{
|
|
int x, y, k;
|
|
|
|
if (Integral_SIMD<T, ST, QT>()(src, _srcstep,
|
|
sum, _sumstep,
|
|
sqsum, _sqsumstep,
|
|
tilted, _tiltedstep,
|
|
width, height, cn))
|
|
return;
|
|
|
|
int srcstep = (int)(_srcstep/sizeof(T));
|
|
int sumstep = (int)(_sumstep/sizeof(ST));
|
|
int tiltedstep = (int)(_tiltedstep/sizeof(ST));
|
|
int sqsumstep = (int)(_sqsumstep/sizeof(QT));
|
|
|
|
width *= cn;
|
|
|
|
memset( sum, 0, (width+cn)*sizeof(sum[0]));
|
|
sum += sumstep + cn;
|
|
|
|
if( sqsum )
|
|
{
|
|
memset( sqsum, 0, (width+cn)*sizeof(sqsum[0]));
|
|
sqsum += sqsumstep + cn;
|
|
}
|
|
|
|
if( tilted )
|
|
{
|
|
memset( tilted, 0, (width+cn)*sizeof(tilted[0]));
|
|
tilted += tiltedstep + cn;
|
|
}
|
|
|
|
if( sqsum == 0 && tilted == 0 )
|
|
{
|
|
for( y = 0; y < height; y++, src += srcstep - cn, sum += sumstep - cn )
|
|
{
|
|
for( k = 0; k < cn; k++, src++, sum++ )
|
|
{
|
|
ST s = sum[-cn] = 0;
|
|
for( x = 0; x < width; x += cn )
|
|
{
|
|
s += src[x];
|
|
sum[x] = sum[x - sumstep] + s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if( tilted == 0 )
|
|
{
|
|
for( y = 0; y < height; y++, src += srcstep - cn,
|
|
sum += sumstep - cn, sqsum += sqsumstep - cn )
|
|
{
|
|
for( k = 0; k < cn; k++, src++, sum++, sqsum++ )
|
|
{
|
|
ST s = sum[-cn] = 0;
|
|
QT sq = sqsum[-cn] = 0;
|
|
for( x = 0; x < width; x += cn )
|
|
{
|
|
T it = src[x];
|
|
s += it;
|
|
sq += (QT)it*it;
|
|
ST t = sum[x - sumstep] + s;
|
|
QT tq = sqsum[x - sqsumstep] + sq;
|
|
sum[x] = t;
|
|
sqsum[x] = tq;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
AutoBuffer<ST> _buf(width+cn);
|
|
ST* buf = _buf.data();
|
|
ST s;
|
|
QT sq;
|
|
for( k = 0; k < cn; k++, src++, sum++, tilted++, buf++ )
|
|
{
|
|
sum[-cn] = tilted[-cn] = 0;
|
|
|
|
for( x = 0, s = 0, sq = 0; x < width; x += cn )
|
|
{
|
|
T it = src[x];
|
|
buf[x] = tilted[x] = it;
|
|
s += it;
|
|
sq += (QT)it*it;
|
|
sum[x] = s;
|
|
if( sqsum )
|
|
sqsum[x] = sq;
|
|
}
|
|
|
|
if( width == cn )
|
|
buf[cn] = 0;
|
|
|
|
if( sqsum )
|
|
{
|
|
sqsum[-cn] = 0;
|
|
sqsum++;
|
|
}
|
|
}
|
|
|
|
for( y = 1; y < height; y++ )
|
|
{
|
|
src += srcstep - cn;
|
|
sum += sumstep - cn;
|
|
tilted += tiltedstep - cn;
|
|
buf += -cn;
|
|
|
|
if( sqsum )
|
|
sqsum += sqsumstep - cn;
|
|
|
|
for( k = 0; k < cn; k++, src++, sum++, tilted++, buf++ )
|
|
{
|
|
T it = src[0];
|
|
ST t0 = s = it;
|
|
QT tq0 = sq = (QT)it*it;
|
|
|
|
sum[-cn] = 0;
|
|
if( sqsum )
|
|
sqsum[-cn] = 0;
|
|
tilted[-cn] = tilted[-tiltedstep];
|
|
|
|
sum[0] = sum[-sumstep] + t0;
|
|
if( sqsum )
|
|
sqsum[0] = sqsum[-sqsumstep] + tq0;
|
|
tilted[0] = tilted[-tiltedstep] + t0 + buf[cn];
|
|
|
|
for( x = cn; x < width - cn; x += cn )
|
|
{
|
|
ST t1 = buf[x];
|
|
buf[x - cn] = t1 + t0;
|
|
t0 = it = src[x];
|
|
tq0 = (QT)it*it;
|
|
s += t0;
|
|
sq += tq0;
|
|
sum[x] = sum[x - sumstep] + s;
|
|
if( sqsum )
|
|
sqsum[x] = sqsum[x - sqsumstep] + sq;
|
|
t1 += buf[x + cn] + t0 + tilted[x - tiltedstep - cn];
|
|
tilted[x] = t1;
|
|
}
|
|
|
|
if( width > cn )
|
|
{
|
|
ST t1 = buf[x];
|
|
buf[x - cn] = t1 + t0;
|
|
t0 = it = src[x];
|
|
tq0 = (QT)it*it;
|
|
s += t0;
|
|
sq += tq0;
|
|
sum[x] = sum[x - sumstep] + s;
|
|
if( sqsum )
|
|
sqsum[x] = sqsum[x - sqsumstep] + sq;
|
|
tilted[x] = t0 + t1 + tilted[x - tiltedstep - cn];
|
|
buf[x] = t0;
|
|
}
|
|
|
|
if( sqsum )
|
|
sqsum++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_integral( InputArray _src, OutputArray _sum, int sdepth )
|
|
{
|
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
|
|
|
if ( (_src.type() != CV_8UC1) ||
|
|
!(sdepth == CV_32S || sdepth == CV_32F || (doubleSupport && sdepth == CV_64F)))
|
|
return false;
|
|
|
|
static const int tileSize = 16;
|
|
|
|
String build_opt = format("-D sumT=%s -D LOCAL_SUM_SIZE=%d%s",
|
|
ocl::typeToStr(sdepth), tileSize,
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
|
|
|
ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt);
|
|
if (kcols.empty())
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
Size src_size = src.size();
|
|
Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize);
|
|
UMat buf(bufsize, sdepth);
|
|
kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf));
|
|
size_t gt = src.cols, lt = tileSize;
|
|
if (!kcols.run(1, >, <, false))
|
|
return false;
|
|
|
|
ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt);
|
|
if (krows.empty())
|
|
return false;
|
|
|
|
Size sumsize(src_size.width + 1, src_size.height + 1);
|
|
_sum.create(sumsize, sdepth);
|
|
UMat sum = _sum.getUMat();
|
|
|
|
krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::WriteOnly(sum));
|
|
gt = src.rows;
|
|
return krows.run(1, >, <, false);
|
|
}
|
|
|
|
static bool ocl_integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, int sdepth, int sqdepth )
|
|
{
|
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
|
|
|
if ( _src.type() != CV_8UC1 || (!doubleSupport && (sdepth == CV_64F || sqdepth == CV_64F)) )
|
|
return false;
|
|
|
|
static const int tileSize = 16;
|
|
|
|
String build_opt = format("-D SUM_SQUARE -D sumT=%s -D sumSQT=%s -D LOCAL_SUM_SIZE=%d%s",
|
|
ocl::typeToStr(sdepth), ocl::typeToStr(sqdepth),
|
|
tileSize,
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
|
|
|
ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt);
|
|
if (kcols.empty())
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
Size src_size = src.size();
|
|
Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize);
|
|
UMat buf(bufsize, sdepth);
|
|
UMat buf_sq(bufsize, sqdepth);
|
|
kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf), ocl::KernelArg::WriteOnlyNoSize(buf_sq));
|
|
size_t gt = src.cols, lt = tileSize;
|
|
if (!kcols.run(1, >, <, false))
|
|
return false;
|
|
|
|
ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt);
|
|
if (krows.empty())
|
|
return false;
|
|
|
|
Size sumsize(src_size.width + 1, src_size.height + 1);
|
|
_sum.create(sumsize, sdepth);
|
|
UMat sum = _sum.getUMat();
|
|
_sqsum.create(sumsize, sqdepth);
|
|
UMat sum_sq = _sqsum.getUMat();
|
|
|
|
krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::ReadOnlyNoSize(buf_sq), ocl::KernelArg::WriteOnly(sum), ocl::KernelArg::WriteOnlyNoSize(sum_sq));
|
|
gt = src.rows;
|
|
return krows.run(1, >, <, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#if defined(HAVE_IPP)
|
|
namespace cv
|
|
{
|
|
static bool ipp_integral(
|
|
int depth, int sdepth, int sqdepth,
|
|
const uchar* src, size_t srcstep,
|
|
uchar* sum, size_t sumstep,
|
|
uchar* sqsum, size_t sqsumstep,
|
|
uchar* tilted, size_t tstep,
|
|
int width, int height, int cn)
|
|
{
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
IppiSize size = {width, height};
|
|
|
|
if(cn > 1)
|
|
return false;
|
|
if(tilted)
|
|
{
|
|
CV_UNUSED(tstep);
|
|
return false;
|
|
}
|
|
|
|
if(!sqsum)
|
|
{
|
|
if(depth == CV_8U && sdepth == CV_32S)
|
|
return CV_INSTRUMENT_FUN_IPP(ippiIntegral_8u32s_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32s*)sum, (int)sumstep, size, 0) >= 0;
|
|
else if(depth == CV_8UC1 && sdepth == CV_32F)
|
|
return CV_INSTRUMENT_FUN_IPP(ippiIntegral_8u32f_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32f*)sum, (int)sumstep, size, 0) >= 0;
|
|
else if(depth == CV_32FC1 && sdepth == CV_32F)
|
|
return CV_INSTRUMENT_FUN_IPP(ippiIntegral_32f_C1R, (const Ipp32f*)src, (int)srcstep, (Ipp32f*)sum, (int)sumstep, size) >= 0;
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if(depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32S)
|
|
return CV_INSTRUMENT_FUN_IPP(ippiSqrIntegral_8u32s_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32s*)sum, (int)sumstep, (Ipp32s*)sqsum, (int)sqsumstep, size, 0, 0) >= 0;
|
|
else if(depth == CV_8U && sdepth == CV_32S && sqdepth == CV_64F)
|
|
return CV_INSTRUMENT_FUN_IPP(ippiSqrIntegral_8u32s64f_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32s*)sum, (int)sumstep, (Ipp64f*)sqsum, (int)sqsumstep, size, 0, 0) >= 0;
|
|
else if(depth == CV_8U && sdepth == CV_32F && sqdepth == CV_64F)
|
|
return CV_INSTRUMENT_FUN_IPP(ippiSqrIntegral_8u32f64f_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32f*)sum, (int)sumstep, (Ipp64f*)sqsum, (int)sqsumstep, size, 0, 0) >= 0;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
namespace cv { namespace hal {
|
|
|
|
void integral(int depth, int sdepth, int sqdepth,
|
|
const uchar* src, size_t srcstep,
|
|
uchar* sum, size_t sumstep,
|
|
uchar* sqsum, size_t sqsumstep,
|
|
uchar* tilted, size_t tstep,
|
|
int width, int height, int cn)
|
|
{
|
|
CALL_HAL(integral, cv_hal_integral, depth, sdepth, sqdepth, src, srcstep, sum, sumstep, sqsum, sqsumstep, tilted, tstep, width, height, cn);
|
|
CV_IPP_RUN_FAST(ipp_integral(depth, sdepth, sqdepth, src, srcstep, sum, sumstep, sqsum, sqsumstep, tilted, tstep, width, height, cn));
|
|
|
|
#define ONE_CALL(A, B, C) integral_<A, B, C>((const A*)src, srcstep, (B*)sum, sumstep, (C*)sqsum, sqsumstep, (B*)tilted, tstep, width, height, cn)
|
|
|
|
if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_64F )
|
|
ONE_CALL(uchar, int, double);
|
|
else if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32F )
|
|
ONE_CALL(uchar, int, float);
|
|
else if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32S )
|
|
ONE_CALL(uchar, int, int);
|
|
else if( depth == CV_8U && sdepth == CV_32F && sqdepth == CV_64F )
|
|
ONE_CALL(uchar, float, double);
|
|
else if( depth == CV_8U && sdepth == CV_32F && sqdepth == CV_32F )
|
|
ONE_CALL(uchar, float, float);
|
|
else if( depth == CV_8U && sdepth == CV_64F && sqdepth == CV_64F )
|
|
ONE_CALL(uchar, double, double);
|
|
else if( depth == CV_16U && sdepth == CV_64F && sqdepth == CV_64F )
|
|
ONE_CALL(ushort, double, double);
|
|
else if( depth == CV_16S && sdepth == CV_64F && sqdepth == CV_64F )
|
|
ONE_CALL(short, double, double);
|
|
else if( depth == CV_32F && sdepth == CV_32F && sqdepth == CV_64F )
|
|
ONE_CALL(float, float, double);
|
|
else if( depth == CV_32F && sdepth == CV_32F && sqdepth == CV_32F )
|
|
ONE_CALL(float, float, float);
|
|
else if( depth == CV_32F && sdepth == CV_64F && sqdepth == CV_64F )
|
|
ONE_CALL(float, double, double);
|
|
else if( depth == CV_64F && sdepth == CV_64F && sqdepth == CV_64F )
|
|
ONE_CALL(double, double, double);
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "" );
|
|
|
|
#undef ONE_CALL
|
|
}
|
|
|
|
}} // cv::hal::
|
|
|
|
void cv::integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, OutputArray _tilted, int sdepth, int sqdepth )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
if( sdepth <= 0 )
|
|
sdepth = depth == CV_8U ? CV_32S : CV_64F;
|
|
if ( sqdepth <= 0 )
|
|
sqdepth = CV_64F;
|
|
sdepth = CV_MAT_DEPTH(sdepth), sqdepth = CV_MAT_DEPTH(sqdepth);
|
|
|
|
CV_OCL_RUN(_sum.isUMat() && !_tilted.needed(),
|
|
(_sqsum.needed() ? ocl_integral(_src, _sum, _sqsum, sdepth, sqdepth) : ocl_integral(_src, _sum, sdepth)));
|
|
|
|
Size ssize = _src.size(), isize(ssize.width + 1, ssize.height + 1);
|
|
_sum.create( isize, CV_MAKETYPE(sdepth, cn) );
|
|
Mat src = _src.getMat(), sum =_sum.getMat(), sqsum, tilted;
|
|
|
|
if( _sqsum.needed() )
|
|
{
|
|
_sqsum.create( isize, CV_MAKETYPE(sqdepth, cn) );
|
|
sqsum = _sqsum.getMat();
|
|
};
|
|
|
|
if( _tilted.needed() )
|
|
{
|
|
_tilted.create( isize, CV_MAKETYPE(sdepth, cn) );
|
|
tilted = _tilted.getMat();
|
|
}
|
|
|
|
hal::integral(depth, sdepth, sqdepth,
|
|
src.ptr(), src.step,
|
|
sum.ptr(), sum.step,
|
|
sqsum.ptr(), sqsum.step,
|
|
tilted.ptr(), tilted.step,
|
|
src.cols, src.rows, cn);
|
|
}
|
|
|
|
void cv::integral( InputArray src, OutputArray sum, int sdepth )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
integral( src, sum, noArray(), noArray(), sdepth );
|
|
}
|
|
|
|
void cv::integral( InputArray src, OutputArray sum, OutputArray sqsum, int sdepth, int sqdepth )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
integral( src, sum, sqsum, noArray(), sdepth, sqdepth );
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvIntegral( const CvArr* image, CvArr* sumImage,
|
|
CvArr* sumSqImage, CvArr* tiltedSumImage )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(image), sum = cv::cvarrToMat(sumImage), sum0 = sum;
|
|
cv::Mat sqsum0, sqsum, tilted0, tilted;
|
|
cv::Mat *psqsum = 0, *ptilted = 0;
|
|
|
|
if( sumSqImage )
|
|
{
|
|
sqsum0 = sqsum = cv::cvarrToMat(sumSqImage);
|
|
psqsum = &sqsum;
|
|
}
|
|
|
|
if( tiltedSumImage )
|
|
{
|
|
tilted0 = tilted = cv::cvarrToMat(tiltedSumImage);
|
|
ptilted = &tilted;
|
|
}
|
|
cv::integral( src, sum, psqsum ? cv::_OutputArray(*psqsum) : cv::_OutputArray(),
|
|
ptilted ? cv::_OutputArray(*ptilted) : cv::_OutputArray(), sum.depth() );
|
|
|
|
CV_Assert( sum.data == sum0.data && sqsum.data == sqsum0.data && tilted.data == tilted0.data );
|
|
}
|
|
|
|
/* End of file. */
|