mirror of
https://github.com/opencv/opencv.git
synced 2025-06-09 18:43:05 +08:00
365 lines
14 KiB
C++
365 lines
14 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class NormalizeBBoxLayerImpl CV_FINAL : public NormalizeBBoxLayer
|
|
{
|
|
public:
|
|
NormalizeBBoxLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
pnorm = params.get<float>("p", 2);
|
|
epsilon = params.get<float>("eps", 1e-10f);
|
|
acrossSpatial = params.get<bool>("across_spatial", true);
|
|
startAxis = params.get<int>("start_axis", 1);
|
|
CV_Assert(!params.has("across_spatial") || !params.has("end_axis"));
|
|
endAxis = params.get<int>("end_axis", acrossSpatial ? -1 : startAxis);
|
|
CV_Assert(pnorm > 0);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
if (pnorm != 2)
|
|
return false;
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && preferableTarget == DNN_TARGET_MYRIAD)
|
|
return !acrossSpatial;
|
|
|
|
return startAxis == 1;
|
|
}
|
|
return backendId == DNN_BACKEND_OPENCV;
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == 1);
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
internals.resize(1, inputs[0]);
|
|
internals[0][0] = 1; // Batch size.
|
|
return true;
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> inputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
CV_Assert(inputs.size() == 1);
|
|
endAxis = endAxis == -1 ? (inputs[0].dims - 1) : endAxis;
|
|
startAxis = startAxis == -1 ? (inputs[0].dims - 1) : startAxis;
|
|
acrossSpatial = (startAxis == 1 && endAxis == inputs[0].dims - 1);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
if (inputs_.depth() == CV_16S)
|
|
return false;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
internals_.getUMatVector(internals);
|
|
|
|
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
|
|
CV_Assert(inputs[0].total() == outputs[0].total());
|
|
|
|
const UMat& inp0 = inputs[0];
|
|
UMat& buffer = internals[0];
|
|
startAxis = normalize_axis(startAxis, inp0.dims);
|
|
endAxis = normalize_axis(endAxis, inp0.dims);
|
|
|
|
size_t num = total(shape(inp0.size), 0, startAxis);
|
|
size_t numPlanes = total(shape(inp0.size), startAxis, endAxis + 1);
|
|
size_t planeSize = inp0.total() / (num * numPlanes);
|
|
MatShape s = shape(1, inputs[0].total());
|
|
UMat inp = inputs[0].reshape(1, s.size(), &s[0]).reshape(1, num);
|
|
UMat out = outputs[0].reshape(1, s.size(), &s[0]).reshape(1, num);
|
|
for (size_t i = 0; i < num; ++i)
|
|
{
|
|
s = shape(numPlanes, planeSize);
|
|
UMat src = inp.row(i).reshape(1, s.size(), &s[0]);
|
|
UMat dst = out.row(i).reshape(1, s.size(), &s[0]);
|
|
|
|
UMat abs_mat;
|
|
absdiff(src, cv::Scalar::all(0), abs_mat);
|
|
pow(abs_mat, pnorm, buffer);
|
|
|
|
if (planeSize == 1)
|
|
{
|
|
// add eps to avoid overflow
|
|
float absSum = sum(buffer)[0] + epsilon;
|
|
float norm = pow(absSum, 1.0f / pnorm);
|
|
multiply(src, 1.0f / norm, dst);
|
|
}
|
|
else
|
|
{
|
|
Mat norm;
|
|
reduce(buffer, norm, 0, REDUCE_SUM);
|
|
norm += epsilon;
|
|
|
|
// compute inverted norm to call multiply instead divide
|
|
cv::pow(norm, -1.0f / pnorm, norm);
|
|
|
|
repeat(norm, numPlanes, 1, buffer);
|
|
multiply(src, buffer, dst);
|
|
}
|
|
|
|
if (!blobs.empty())
|
|
{
|
|
// scale the output
|
|
Mat scale = blobs[0];
|
|
if (scale.total() == 1)
|
|
{
|
|
// _scale: 1 x 1
|
|
multiply(dst, scale.at<float>(0, 0), dst);
|
|
}
|
|
else
|
|
{
|
|
// _scale: _channels x 1
|
|
CV_Assert(scale.total() == numPlanes);
|
|
repeat(scale, 1, dst.cols, buffer);
|
|
multiply(dst, buffer, dst);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
|
|
CV_Assert(inputs[0].total() == outputs[0].total());
|
|
|
|
const Mat& inp0 = inputs[0];
|
|
Mat& buffer = internals[0];
|
|
startAxis = normalize_axis(startAxis, inp0.dims);
|
|
endAxis = normalize_axis(endAxis, inp0.dims);
|
|
|
|
const float* inpData = inp0.ptr<float>();
|
|
float* outData = outputs[0].ptr<float>();
|
|
|
|
size_t num = total(shape(inp0.size), 0, startAxis);
|
|
size_t numPlanes = total(shape(inp0.size), startAxis, endAxis + 1);
|
|
CV_Assert(num * numPlanes != 0);
|
|
size_t planeSize = inp0.total() / (num * numPlanes);
|
|
for (size_t n = 0; n < num; ++n)
|
|
{
|
|
Mat src = Mat(numPlanes, planeSize, CV_32F, (void*)inpData);
|
|
Mat dst = Mat(numPlanes, planeSize, CV_32F, (void*)outData);
|
|
cv::pow(abs(src), pnorm, buffer);
|
|
|
|
if (planeSize == 1)
|
|
{
|
|
// add eps to avoid overflow
|
|
float absSum = sum(buffer)[0] + epsilon;
|
|
float norm = pow(absSum, 1.0f / pnorm);
|
|
multiply(src, 1.0f / norm, dst);
|
|
}
|
|
else
|
|
{
|
|
Mat norm;
|
|
reduce(buffer, norm, 0, REDUCE_SUM);
|
|
norm += epsilon;
|
|
|
|
// compute inverted norm to call multiply instead divide
|
|
cv::pow(norm, -1.0f / pnorm, norm);
|
|
|
|
repeat(norm, numPlanes, 1, buffer);
|
|
multiply(src, buffer, dst);
|
|
}
|
|
|
|
if (!blobs.empty())
|
|
{
|
|
// scale the output
|
|
Mat scale = blobs[0];
|
|
if (scale.total() == 1)
|
|
{
|
|
// _scale: 1 x 1
|
|
dst *= scale.at<float>(0, 0);
|
|
}
|
|
else
|
|
{
|
|
// _scale: _channels x 1
|
|
CV_Assert(scale.total() == numPlanes);
|
|
repeat(scale, 1, dst.cols, buffer);
|
|
multiply(dst, buffer, dst);
|
|
}
|
|
}
|
|
inpData += numPlanes * planeSize;
|
|
outData += numPlanes * planeSize;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
|
|
std::vector<size_t> dims = input->getDims();
|
|
if (dims.size() == 4)
|
|
{
|
|
InferenceEngine::Builder::NormalizeLayer ieLayer(name);
|
|
|
|
ieLayer.setChannelShared(false);
|
|
ieLayer.setAcrossMaps(acrossSpatial);
|
|
ieLayer.setEpsilon(epsilon);
|
|
|
|
InferenceEngine::Builder::Layer l = ieLayer;
|
|
const int numChannels = dims[1];
|
|
InferenceEngine::Blob::Ptr weights;
|
|
if (blobs.empty())
|
|
{
|
|
weights = InferenceEngine::make_shared_blob<float>({
|
|
InferenceEngine::Precision::FP32,
|
|
{(size_t)numChannels}, InferenceEngine::Layout::C
|
|
});
|
|
weights->allocate();
|
|
|
|
Mat weightsMat = infEngineBlobToMat(weights).reshape(1, numChannels);
|
|
Mat(numChannels, 1, CV_32F, Scalar(1)).copyTo(weightsMat);
|
|
l.getParameters()["channel_shared"] = false;
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(numChannels == blobs[0].total());
|
|
weights = wrapToInfEngineBlob(blobs[0], {(size_t)numChannels}, InferenceEngine::Layout::C);
|
|
l.getParameters()["channel_shared"] = blobs[0].total() == 1;
|
|
}
|
|
addConstantData("weights", weights, l);
|
|
l.getParameters()["across_spatial"] = acrossSpatial;
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l));
|
|
}
|
|
else
|
|
{
|
|
InferenceEngine::Builder::GRNLayer ieLayer(name);
|
|
ieLayer.setBeta(epsilon);
|
|
|
|
InferenceEngine::Builder::Layer l = ieLayer;
|
|
l.getParameters()["bias"] = epsilon;
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(l));
|
|
}
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
const size_t batch = ieInpNode->get_shape()[0];
|
|
const size_t numChannels = ieInpNode->get_shape()[1];
|
|
|
|
std::vector<int64_t> axes_data;
|
|
if (!acrossSpatial) {
|
|
axes_data.push_back(1);
|
|
} else {
|
|
axes_data.resize(ieInpNode->get_shape().size());
|
|
std::iota(axes_data.begin(), axes_data.end(), 0);
|
|
}
|
|
auto axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{axes_data.size()}, axes_data);
|
|
auto norm = std::make_shared<ngraph::op::NormalizeL2>(ieInpNode, axes, epsilon, ngraph::op::EpsMode::ADD);
|
|
|
|
CV_Assert(blobs.empty() || numChannels == blobs[0].total());
|
|
std::vector<size_t> shape(ieInpNode->get_shape().size(), 1);
|
|
shape[0] = blobs.empty() ? 1 : batch;
|
|
shape[1] = numChannels;
|
|
std::shared_ptr<ngraph::op::Constant> weight;
|
|
if (blobs.empty())
|
|
{
|
|
std::vector<float> ones(numChannels, 1);
|
|
weight = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), ones.data());
|
|
}
|
|
else
|
|
{
|
|
weight = std::make_shared<ngraph::op::Constant>(
|
|
ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);
|
|
}
|
|
auto mul = std::make_shared<ngraph::op::v0::Multiply>(norm, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(mul));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
private:
|
|
int startAxis, endAxis;
|
|
};
|
|
|
|
|
|
Ptr<NormalizeBBoxLayer> NormalizeBBoxLayer::create(const LayerParams ¶ms)
|
|
{
|
|
return Ptr<NormalizeBBoxLayer>(new NormalizeBBoxLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|