mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 07:09:12 +08:00
4e2ef8c8f5
Enable cuda4dnn on hardware without support for __half * Enable cuda4dnn on hardware without support for half (ie. compute capability < 5.3) Update CMakeLists.txt Lowered minimum CC to 3.0 * UPD: added ifdef on new copy kernel * added fp16 support detection at runtime * Clarified #if condition on atomicAdd definition * More explicit CMake error message
177 lines
7.6 KiB
Plaintext
177 lines
7.6 KiB
Plaintext
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "array.hpp"
|
|
#include "math.hpp"
|
|
#include "types.hpp"
|
|
#include "vector_traits.hpp"
|
|
#include "grid_stride_range.hpp"
|
|
#include "execution.hpp"
|
|
|
|
#include "../cuda4dnn/csl/stream.hpp"
|
|
#include "../cuda4dnn/csl/span.hpp"
|
|
|
|
#include <cstddef>
|
|
|
|
using namespace cv::dnn::cuda4dnn::csl;
|
|
using namespace cv::dnn::cuda4dnn::csl::device;
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
|
|
|
namespace raw {
|
|
template <class T, bool Normalize>
|
|
__global__ void prior_box(
|
|
Span<T> output,
|
|
View<float> boxWidth, View<float> boxHeight, View<float> offsetX, View<float> offsetY, float stepX, float stepY,
|
|
size_type layerWidth, size_type layerHeight,
|
|
size_type imageWidth, size_type imageHeight)
|
|
{
|
|
/* each box consists of two pair of coordinates and hence 4 values in total */
|
|
/* since the entire output consists (first channel at least) of these boxes,
|
|
* we are garunteeed that the output is aligned to a boundary of 4 values
|
|
*/
|
|
using vector_type = get_vector_type_t<T, 4>;
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
|
|
/* num_points contains the number of points in the feature map of interest
|
|
* each iteration of the stride loop selects a point and generates prior boxes for it
|
|
*/
|
|
size_type num_points = layerWidth * layerHeight;
|
|
for (auto idx : grid_stride_range(num_points)) {
|
|
const index_type x = idx % layerWidth,
|
|
y = idx / layerWidth;
|
|
|
|
index_type output_offset_v4 = idx * offsetX.size() * boxWidth.size();
|
|
for (int i = 0; i < boxWidth.size(); i++) {
|
|
for (int j = 0; j < offsetX.size(); j++) {
|
|
float center_x = (x + offsetX[j]) * stepX;
|
|
float center_y = (y + offsetY[j]) * stepY;
|
|
|
|
vector_type vec;
|
|
if(Normalize) {
|
|
vec.data[0] = (center_x - boxWidth[i] * 0.5f) / imageWidth;
|
|
vec.data[1] = (center_y - boxHeight[i] * 0.5f) / imageHeight;
|
|
vec.data[2] = (center_x + boxWidth[i] * 0.5f) / imageWidth;
|
|
vec.data[3] = (center_y + boxHeight[i] * 0.5f) / imageHeight;
|
|
} else {
|
|
vec.data[0] = center_x - boxWidth[i] * 0.5f;
|
|
vec.data[1] = center_y - boxHeight[i] * 0.5f;
|
|
vec.data[2] = center_x + boxWidth[i] * 0.5f - 1.0f;
|
|
vec.data[3] = center_y + boxHeight[i] * 0.5f - 1.0f;
|
|
}
|
|
|
|
v_store(output_vPtr[output_offset_v4], vec);
|
|
output_offset_v4++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void prior_box_clip(Span<T> output) {
|
|
for (auto i : grid_stride_range(output.size())) {
|
|
using device::clamp;
|
|
output[i] = clamp<T>(output[i], 0.0, 1.0);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void prior_box_set_variance1(Span<T> output, float variance) {
|
|
using vector_type = get_vector_type_t<T, 4>;
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
for (auto i : grid_stride_range(output.size() / 4)) {
|
|
vector_type vec;
|
|
for (int j = 0; j < 4; j++)
|
|
vec.data[j] = variance;
|
|
v_store(output_vPtr[i], vec);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void prior_box_set_variance4(Span<T> output, array<float, 4> variance) {
|
|
using vector_type = get_vector_type_t<T, 4>;
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
for (auto i : grid_stride_range(output.size() / 4)) {
|
|
vector_type vec;
|
|
for(int j = 0; j < 4; j++)
|
|
vec.data[j] = variance[j];
|
|
v_store(output_vPtr[i], vec);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, bool Normalize> static
|
|
void launch_prior_box_kernel(
|
|
const Stream& stream,
|
|
Span<T> output, View<float> boxWidth, View<float> boxHeight, View<float> offsetX, View<float> offsetY, float stepX, float stepY,
|
|
std::size_t layerWidth, std::size_t layerHeight, std::size_t imageWidth, std::size_t imageHeight)
|
|
{
|
|
auto num_points = layerWidth * layerHeight;
|
|
auto kernel = raw::prior_box<T, Normalize>;
|
|
auto policy = make_policy(kernel, num_points, 0, stream);
|
|
launch_kernel(kernel, policy,
|
|
output, boxWidth, boxHeight, offsetX, offsetY, stepX, stepY,
|
|
layerWidth, layerHeight, imageWidth, imageHeight);
|
|
}
|
|
|
|
template <class T>
|
|
void generate_prior_boxes(
|
|
const Stream& stream,
|
|
Span<T> output,
|
|
View<float> boxWidth, View<float> boxHeight, View<float> offsetX, View<float> offsetY, float stepX, float stepY,
|
|
std::vector<float> variance,
|
|
std::size_t numPriors,
|
|
std::size_t layerWidth, std::size_t layerHeight,
|
|
std::size_t imageWidth, std::size_t imageHeight,
|
|
bool normalize, bool clip)
|
|
{
|
|
if (normalize) {
|
|
launch_prior_box_kernel<T, true>(
|
|
stream, output, boxWidth, boxHeight, offsetX, offsetY, stepX, stepY,
|
|
layerWidth, layerHeight, imageWidth, imageHeight
|
|
);
|
|
} else {
|
|
launch_prior_box_kernel<T, false>(
|
|
stream, output, boxWidth, boxHeight, offsetX, offsetY, stepX, stepY,
|
|
layerWidth, layerHeight, imageWidth, imageHeight
|
|
);
|
|
}
|
|
|
|
std::size_t channel_size = layerHeight * layerWidth * numPriors * 4;
|
|
CV_Assert(channel_size * 2 == output.size());
|
|
|
|
if (clip) {
|
|
auto output_span_c1 = Span<T>(output.data(), channel_size);
|
|
auto kernel = raw::prior_box_clip<T>;
|
|
auto policy = make_policy(kernel, output_span_c1.size(), 0, stream);
|
|
launch_kernel(kernel, policy, output_span_c1);
|
|
}
|
|
|
|
auto output_span_c2 = Span<T>(output.data() + channel_size, channel_size);
|
|
if (variance.size() == 1) {
|
|
auto kernel = raw::prior_box_set_variance1<T>;
|
|
auto policy = make_policy(kernel, output_span_c2.size() / 4, 0, stream);
|
|
launch_kernel(kernel, policy, output_span_c2, variance[0]);
|
|
} else {
|
|
array<float, 4> variance_k;
|
|
variance_k.assign(std::begin(variance), std::end(variance));
|
|
auto kernel = raw::prior_box_set_variance4<T>;
|
|
auto policy = make_policy(kernel, output_span_c2.size() / 4, 0, stream);
|
|
launch_kernel(kernel, policy, output_span_c2, variance_k);
|
|
}
|
|
}
|
|
|
|
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
|
|
template void generate_prior_boxes(const Stream&, Span<__half>, View<float>, View<float>, View<float>, View<float>, float, float,
|
|
std::vector<float>, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, bool, bool);
|
|
#endif
|
|
|
|
template void generate_prior_boxes(const Stream&, Span<float>, View<float>, View<float>, View<float>, View<float>, float, float,
|
|
std::vector<float>, std::size_t, std::size_t, std::size_t, std::size_t, std::size_t, bool, bool);
|
|
|
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|