mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 08:08:10 +08:00
781 lines
23 KiB
C++
781 lines
23 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/core/gpumat.hpp"
|
|
#include <iostream>
|
|
|
|
#if defined(HAVE_CUDA)
|
|
# include <cuda_runtime.h>
|
|
# include <npp.h>
|
|
|
|
# define CUDART_MINIMUM_REQUIRED_VERSION 4020
|
|
# define NPP_MINIMUM_REQUIRED_VERSION 4200
|
|
|
|
# if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION)
|
|
# error "Insufficient Cuda Runtime library version, please update it."
|
|
# endif
|
|
|
|
# if (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD < NPP_MINIMUM_REQUIRED_VERSION)
|
|
# error "Insufficient NPP version, please update it."
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef DYNAMIC_CUDA_SUPPORT
|
|
# include <dlfcn.h>
|
|
# include <sys/types.h>
|
|
# include <sys/stat.h>
|
|
# include <dirent.h>
|
|
#endif
|
|
|
|
#ifdef ANDROID
|
|
# ifdef LOG_TAG
|
|
# undef LOG_TAG
|
|
# endif
|
|
# ifdef LOGE
|
|
# undef LOGE
|
|
# endif
|
|
# ifdef LOGD
|
|
# undef LOGD
|
|
# endif
|
|
# ifdef LOGI
|
|
# undef LOGI
|
|
# endif
|
|
|
|
# include <android/log.h>
|
|
|
|
# define LOG_TAG "OpenCV::CUDA"
|
|
# define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
|
|
# define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
|
|
# define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__))
|
|
#endif
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
|
|
|
|
#include "opencv2/dynamicuda/dynamicuda.hpp"
|
|
|
|
#ifdef DYNAMIC_CUDA_SUPPORT
|
|
|
|
typedef GpuFuncTable* (*GpuFactoryType)();
|
|
typedef DeviceInfoFuncTable* (*DeviceInfoFactoryType)();
|
|
|
|
static GpuFactoryType gpuFactory = NULL;
|
|
static DeviceInfoFactoryType deviceInfoFactory = NULL;
|
|
|
|
# if defined(__linux__) || defined(__APPLE__) || defined (ANDROID)
|
|
|
|
const std::string DYNAMIC_CUDA_LIB_NAME = "libopencv_dynamicuda.so";
|
|
|
|
# ifdef ANDROID
|
|
static const std::string getCudaSupportLibName()
|
|
{
|
|
Dl_info dl_info;
|
|
if(0 != dladdr((void *)getCudaSupportLibName, &dl_info))
|
|
{
|
|
LOGD("Library name: %s", dl_info.dli_fname);
|
|
LOGD("Library base address: %p", dl_info.dli_fbase);
|
|
|
|
const char* libName=dl_info.dli_fname;
|
|
while( ((*libName)=='/') || ((*libName)=='.') )
|
|
libName++;
|
|
|
|
char lineBuf[2048];
|
|
FILE* file = fopen("/proc/self/smaps", "rt");
|
|
|
|
if(file)
|
|
{
|
|
while (fgets(lineBuf, sizeof lineBuf, file) != NULL)
|
|
{
|
|
//verify that line ends with library name
|
|
int lineLength = strlen(lineBuf);
|
|
int libNameLength = strlen(libName);
|
|
|
|
//trim end
|
|
for(int i = lineLength - 1; i >= 0 && isspace(lineBuf[i]); --i)
|
|
{
|
|
lineBuf[i] = 0;
|
|
--lineLength;
|
|
}
|
|
|
|
if (0 != strncmp(lineBuf + lineLength - libNameLength, libName, libNameLength))
|
|
{
|
|
//the line does not contain the library name
|
|
continue;
|
|
}
|
|
|
|
//extract path from smaps line
|
|
char* pathBegin = strchr(lineBuf, '/');
|
|
if (0 == pathBegin)
|
|
{
|
|
LOGE("Strange error: could not find path beginning in lin \"%s\"", lineBuf);
|
|
continue;
|
|
}
|
|
|
|
char* pathEnd = strrchr(pathBegin, '/');
|
|
pathEnd[1] = 0;
|
|
|
|
LOGD("Libraries folder found: %s", pathBegin);
|
|
|
|
fclose(file);
|
|
return std::string(pathBegin) + DYNAMIC_CUDA_LIB_NAME;
|
|
}
|
|
fclose(file);
|
|
LOGE("Could not find library path");
|
|
}
|
|
else
|
|
{
|
|
LOGE("Could not read /proc/self/smaps");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
LOGE("Could not get library name and base address");
|
|
}
|
|
|
|
return string();
|
|
}
|
|
|
|
# else
|
|
static const std::string getCudaSupportLibName()
|
|
{
|
|
return DYNAMIC_CUDA_LIB_NAME;
|
|
}
|
|
# endif
|
|
|
|
static bool loadCudaSupportLib()
|
|
{
|
|
void* handle;
|
|
const std::string name = getCudaSupportLibName();
|
|
dlerror();
|
|
handle = dlopen(name.c_str(), RTLD_LAZY);
|
|
if (!handle)
|
|
{
|
|
LOGE("Cannot dlopen %s: %s", name.c_str(), dlerror());
|
|
return false;
|
|
}
|
|
|
|
deviceInfoFactory = (DeviceInfoFactoryType)dlsym(handle, "deviceInfoFactory");
|
|
if (!deviceInfoFactory)
|
|
{
|
|
LOGE("Cannot dlsym deviceInfoFactory: %s", dlerror());
|
|
dlclose(handle);
|
|
return false;
|
|
}
|
|
|
|
gpuFactory = (GpuFactoryType)dlsym(handle, "gpuFactory");
|
|
if (!gpuFactory)
|
|
{
|
|
LOGE("Cannot dlsym gpuFactory: %s", dlerror());
|
|
dlclose(handle);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
# else
|
|
# error "Dynamic CUDA support is not implemented for this platform!"
|
|
# endif
|
|
|
|
#endif
|
|
|
|
static GpuFuncTable* gpuFuncTable()
|
|
{
|
|
#ifdef DYNAMIC_CUDA_SUPPORT
|
|
static EmptyFuncTable stub;
|
|
static GpuFuncTable* libFuncTable = loadCudaSupportLib() ? gpuFactory(): (GpuFuncTable*)&stub;
|
|
static GpuFuncTable *funcTable = libFuncTable ? libFuncTable : (GpuFuncTable*)&stub;
|
|
#else
|
|
# ifdef USE_CUDA
|
|
static CudaFuncTable impl;
|
|
static GpuFuncTable* funcTable = &impl;
|
|
#else
|
|
static EmptyFuncTable stub;
|
|
static GpuFuncTable* funcTable = &stub;
|
|
#endif
|
|
#endif
|
|
return funcTable;
|
|
}
|
|
|
|
static DeviceInfoFuncTable* deviceInfoFuncTable()
|
|
{
|
|
#ifdef DYNAMIC_CUDA_SUPPORT
|
|
static EmptyDeviceInfoFuncTable stub;
|
|
static DeviceInfoFuncTable* libFuncTable = loadCudaSupportLib() ? deviceInfoFactory(): (DeviceInfoFuncTable*)&stub;
|
|
static DeviceInfoFuncTable* funcTable = libFuncTable ? libFuncTable : (DeviceInfoFuncTable*)&stub;
|
|
#else
|
|
# ifdef USE_CUDA
|
|
static CudaDeviceInfoFuncTable impl;
|
|
static DeviceInfoFuncTable* funcTable = &impl;
|
|
#else
|
|
static EmptyDeviceInfoFuncTable stub;
|
|
static DeviceInfoFuncTable* funcTable = &stub;
|
|
#endif
|
|
#endif
|
|
return funcTable;
|
|
}
|
|
|
|
|
|
//////////////////////////////// Initialization & Info ////////////////////////
|
|
|
|
int cv::gpu::getCudaEnabledDeviceCount() { return deviceInfoFuncTable()->getCudaEnabledDeviceCount(); }
|
|
|
|
void cv::gpu::setDevice(int device) { deviceInfoFuncTable()->setDevice(device); }
|
|
int cv::gpu::getDevice() { return deviceInfoFuncTable()->getDevice(); }
|
|
|
|
void cv::gpu::resetDevice() { deviceInfoFuncTable()->resetDevice(); }
|
|
|
|
bool cv::gpu::deviceSupports(FeatureSet feature_set) { return deviceInfoFuncTable()->deviceSupports(feature_set); }
|
|
|
|
bool cv::gpu::TargetArchs::builtWith(FeatureSet feature_set) { return deviceInfoFuncTable()->builtWith(feature_set); }
|
|
bool cv::gpu::TargetArchs::has(int major, int minor) { return deviceInfoFuncTable()->has(major, minor); }
|
|
bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { return deviceInfoFuncTable()->hasPtx(major, minor); }
|
|
bool cv::gpu::TargetArchs::hasBin(int major, int minor) { return deviceInfoFuncTable()->hasBin(major, minor); }
|
|
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrLessPtx(major, minor); }
|
|
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreater(major, minor); }
|
|
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterPtx(major, minor); }
|
|
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterBin(major, minor); }
|
|
|
|
size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { return deviceInfoFuncTable()->sharedMemPerBlock(device_id_); }
|
|
void cv::gpu::DeviceInfo::queryMemory(size_t& total_memory, size_t& free_memory) const { deviceInfoFuncTable()->queryMemory(device_id_, total_memory, free_memory); }
|
|
size_t cv::gpu::DeviceInfo::freeMemory() const { return deviceInfoFuncTable()->freeMemory(device_id_); }
|
|
size_t cv::gpu::DeviceInfo::totalMemory() const { return deviceInfoFuncTable()->totalMemory(device_id_); }
|
|
bool cv::gpu::DeviceInfo::supports(FeatureSet feature_set) const { return deviceInfoFuncTable()->supports(device_id_, feature_set); }
|
|
bool cv::gpu::DeviceInfo::isCompatible() const { return deviceInfoFuncTable()->isCompatible(device_id_); }
|
|
|
|
void cv::gpu::DeviceInfo::query()
|
|
{
|
|
name_ = deviceInfoFuncTable()->name(device_id_);
|
|
multi_processor_count_ = deviceInfoFuncTable()->multiProcessorCount(device_id_);
|
|
majorVersion_ = deviceInfoFuncTable()->majorVersion(device_id_);
|
|
minorVersion_ = deviceInfoFuncTable()->minorVersion(device_id_);
|
|
}
|
|
|
|
void cv::gpu::printCudaDeviceInfo(int device) { deviceInfoFuncTable()->printCudaDeviceInfo(device); }
|
|
void cv::gpu::printShortCudaDeviceInfo(int device) { deviceInfoFuncTable()->printShortCudaDeviceInfo(device); }
|
|
|
|
namespace cv { namespace gpu
|
|
{
|
|
CV_EXPORTS void copyWithMask(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, const cv::gpu::GpuMat&, cudaStream_t);
|
|
CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&);
|
|
CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, double, cudaStream_t = 0);
|
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, cudaStream_t);
|
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, cudaStream_t);
|
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar);
|
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&);
|
|
}}
|
|
|
|
//////////////////////////////// GpuMat ///////////////////////////////
|
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
|
|
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
|
|
{
|
|
if (refcount)
|
|
CV_XADD(refcount, 1);
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
|
|
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_),
|
|
step(step_), data((uchar*)data_), refcount(0),
|
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
|
{
|
|
size_t minstep = cols * elemSize();
|
|
|
|
if (step == Mat::AUTO_STEP)
|
|
{
|
|
step = minstep;
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
}
|
|
else
|
|
{
|
|
if (rows == 1)
|
|
step = minstep;
|
|
|
|
CV_DbgAssert(step >= minstep);
|
|
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
|
}
|
|
dataend += step * (rows - 1) + minstep;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
|
|
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
|
|
step(step_), data((uchar*)data_), refcount(0),
|
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
|
{
|
|
size_t minstep = cols * elemSize();
|
|
|
|
if (step == Mat::AUTO_STEP)
|
|
{
|
|
step = minstep;
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
}
|
|
else
|
|
{
|
|
if (rows == 1)
|
|
step = minstep;
|
|
|
|
CV_DbgAssert(step >= minstep);
|
|
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
|
}
|
|
dataend += step * (rows - 1) + minstep;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range _rowRange, Range _colRange)
|
|
{
|
|
flags = m.flags;
|
|
step = m.step; refcount = m.refcount;
|
|
data = m.data; datastart = m.datastart; dataend = m.dataend;
|
|
|
|
if (_rowRange == Range::all())
|
|
rows = m.rows;
|
|
else
|
|
{
|
|
CV_Assert(0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows);
|
|
|
|
rows = _rowRange.size();
|
|
data += step*_rowRange.start;
|
|
}
|
|
|
|
if (_colRange == Range::all())
|
|
cols = m.cols;
|
|
else
|
|
{
|
|
CV_Assert(0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols);
|
|
|
|
cols = _colRange.size();
|
|
data += _colRange.start*elemSize();
|
|
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
|
}
|
|
|
|
if (rows == 1)
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
if (refcount)
|
|
CV_XADD(refcount, 1);
|
|
|
|
if (rows <= 0 || cols <= 0)
|
|
rows = cols = 0;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
|
|
flags(m.flags), rows(roi.height), cols(roi.width),
|
|
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
|
|
datastart(m.datastart), dataend(m.dataend)
|
|
{
|
|
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
|
data += roi.x * elemSize();
|
|
|
|
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows);
|
|
|
|
if (refcount)
|
|
CV_XADD(refcount, 1);
|
|
|
|
if (rows <= 0 || cols <= 0)
|
|
rows = cols = 0;
|
|
}
|
|
|
|
cv::gpu::GpuMat::GpuMat(const Mat& m) :
|
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
|
|
{
|
|
upload(m);
|
|
}
|
|
|
|
GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
|
|
{
|
|
if (this != &m)
|
|
{
|
|
GpuMat temp(m);
|
|
swap(temp);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
void cv::gpu::GpuMat::swap(GpuMat& b)
|
|
{
|
|
std::swap(flags, b.flags);
|
|
std::swap(rows, b.rows);
|
|
std::swap(cols, b.cols);
|
|
std::swap(step, b.step);
|
|
std::swap(data, b.data);
|
|
std::swap(datastart, b.datastart);
|
|
std::swap(dataend, b.dataend);
|
|
std::swap(refcount, b.refcount);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
|
|
{
|
|
size_t esz = elemSize();
|
|
ptrdiff_t delta1 = data - datastart;
|
|
ptrdiff_t delta2 = dataend - datastart;
|
|
|
|
CV_DbgAssert(step > 0);
|
|
|
|
if (delta1 == 0)
|
|
ofs.x = ofs.y = 0;
|
|
else
|
|
{
|
|
ofs.y = static_cast<int>(delta1 / step);
|
|
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
|
|
|
|
CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz);
|
|
}
|
|
|
|
size_t minstep = (ofs.x + cols) * esz;
|
|
|
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
|
|
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
|
|
}
|
|
|
|
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
|
|
{
|
|
Size wholeSize;
|
|
Point ofs;
|
|
locateROI(wholeSize, ofs);
|
|
|
|
size_t esz = elemSize();
|
|
|
|
int row1 = std::max(ofs.y - dtop, 0);
|
|
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
|
|
|
int col1 = std::max(ofs.x - dleft, 0);
|
|
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
|
|
|
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
|
|
rows = row2 - row1;
|
|
cols = col2 - col1;
|
|
|
|
if (esz * cols == step || rows == 1)
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
else
|
|
flags &= ~Mat::CONTINUOUS_FLAG;
|
|
|
|
return *this;
|
|
}
|
|
|
|
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
|
|
{
|
|
GpuMat hdr = *this;
|
|
|
|
int cn = channels();
|
|
if (new_cn == 0)
|
|
new_cn = cn;
|
|
|
|
int total_width = cols * cn;
|
|
|
|
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
|
|
new_rows = rows * total_width / new_cn;
|
|
|
|
if (new_rows != 0 && new_rows != rows)
|
|
{
|
|
int total_size = total_width * rows;
|
|
|
|
if (!isContinuous())
|
|
CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
|
|
|
|
if ((unsigned)new_rows > (unsigned)total_size)
|
|
CV_Error(CV_StsOutOfRange, "Bad new number of rows");
|
|
|
|
total_width = total_size / new_rows;
|
|
|
|
if (total_width * new_rows != total_size)
|
|
CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
|
|
|
|
hdr.rows = new_rows;
|
|
hdr.step = total_width * elemSize1();
|
|
}
|
|
|
|
int new_width = total_width / new_cn;
|
|
|
|
if (new_width * new_cn != total_width)
|
|
CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");
|
|
|
|
hdr.cols = new_width;
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
|
|
|
|
return hdr;
|
|
}
|
|
|
|
cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
|
|
{
|
|
m.download(*this);
|
|
}
|
|
|
|
void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m)
|
|
{
|
|
int area = rows * cols;
|
|
if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area)
|
|
m.create(1, area, type);
|
|
|
|
m.cols = cols;
|
|
m.rows = rows;
|
|
m.step = m.elemSize() * cols;
|
|
m.flags |= Mat::CONTINUOUS_FLAG;
|
|
}
|
|
|
|
void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m)
|
|
{
|
|
if (m.empty() || m.type() != type || m.data != m.datastart)
|
|
m.create(rows, cols, type);
|
|
else
|
|
{
|
|
const size_t esz = m.elemSize();
|
|
const ptrdiff_t delta2 = m.dataend - m.datastart;
|
|
|
|
const size_t minstep = m.cols * esz;
|
|
|
|
Size wholeSize;
|
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / m.step + 1), m.rows);
|
|
wholeSize.width = std::max(static_cast<int>((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols);
|
|
|
|
if (wholeSize.height < rows || wholeSize.width < cols)
|
|
m.create(rows, cols, type);
|
|
else
|
|
{
|
|
m.cols = cols;
|
|
m.rows = rows;
|
|
}
|
|
}
|
|
}
|
|
|
|
GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat &mat)
|
|
{
|
|
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
|
|
return mat(Rect(0, 0, cols, rows));
|
|
return mat = GpuMat(rows, cols, type);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::upload(const Mat& m)
|
|
{
|
|
CV_DbgAssert(!m.empty());
|
|
|
|
create(m.size(), m.type());
|
|
|
|
gpuFuncTable()->copy(m, *this);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::download(Mat& m) const
|
|
{
|
|
CV_DbgAssert(!empty());
|
|
|
|
m.create(size(), type());
|
|
|
|
gpuFuncTable()->copy(*this, m);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::copyTo(GpuMat& m) const
|
|
{
|
|
CV_DbgAssert(!empty());
|
|
|
|
m.create(size(), type());
|
|
|
|
gpuFuncTable()->copy(*this, m);
|
|
}
|
|
|
|
void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
|
|
{
|
|
if (mask.empty())
|
|
copyTo(mat);
|
|
else
|
|
{
|
|
mat.create(size(), type());
|
|
|
|
gpuFuncTable()->copyWithMask(*this, mat, mask);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
|
|
{
|
|
bool noScale = fabs(alpha - 1) < numeric_limits<double>::epsilon() && fabs(beta) < numeric_limits<double>::epsilon();
|
|
|
|
if (rtype < 0)
|
|
rtype = type();
|
|
else
|
|
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
|
|
|
|
int sdepth = depth();
|
|
int ddepth = CV_MAT_DEPTH(rtype);
|
|
if (sdepth == ddepth && noScale)
|
|
{
|
|
copyTo(dst);
|
|
return;
|
|
}
|
|
|
|
GpuMat temp;
|
|
const GpuMat* psrc = this;
|
|
if (sdepth != ddepth && psrc == &dst)
|
|
{
|
|
temp = *this;
|
|
psrc = &temp;
|
|
}
|
|
|
|
dst.create(size(), rtype);
|
|
|
|
if (noScale)
|
|
cv::gpu::convertTo(*psrc, dst);
|
|
else
|
|
cv::gpu::convertTo(*psrc, dst, alpha, beta);
|
|
}
|
|
|
|
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
|
|
{
|
|
CV_Assert(mask.empty() || mask.type() == CV_8UC1);
|
|
CV_DbgAssert(!empty());
|
|
|
|
gpu::setTo(*this, s, mask);
|
|
|
|
return *this;
|
|
}
|
|
|
|
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
|
|
{
|
|
_type &= TYPE_MASK;
|
|
|
|
if (rows == _rows && cols == _cols && type() == _type && data)
|
|
return;
|
|
|
|
if (data)
|
|
release();
|
|
|
|
CV_DbgAssert(_rows >= 0 && _cols >= 0);
|
|
|
|
if (_rows > 0 && _cols > 0)
|
|
{
|
|
flags = Mat::MAGIC_VAL + _type;
|
|
rows = _rows;
|
|
cols = _cols;
|
|
|
|
size_t esz = elemSize();
|
|
|
|
void* devPtr;
|
|
gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows);
|
|
|
|
// Single row must be continuous
|
|
if (rows == 1)
|
|
step = esz * cols;
|
|
|
|
if (esz * cols == step)
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
int64 _nettosize = static_cast<int64>(step) * rows;
|
|
size_t nettosize = static_cast<size_t>(_nettosize);
|
|
|
|
datastart = data = static_cast<uchar*>(devPtr);
|
|
dataend = data + nettosize;
|
|
|
|
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
|
|
*refcount = 1;
|
|
}
|
|
}
|
|
|
|
void cv::gpu::GpuMat::release()
|
|
{
|
|
if (refcount && CV_XADD(refcount, -1) == 1)
|
|
{
|
|
fastFree(refcount);
|
|
|
|
gpuFuncTable()->free(datastart);
|
|
}
|
|
|
|
data = datastart = dataend = 0;
|
|
step = rows = cols = 0;
|
|
refcount = 0;
|
|
}
|
|
|
|
namespace cv { namespace gpu
|
|
{
|
|
void convertTo(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
gpuFuncTable()->convert(src, dst);
|
|
}
|
|
|
|
void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream)
|
|
{
|
|
gpuFuncTable()->convert(src, dst, alpha, beta, stream);
|
|
}
|
|
|
|
void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
|
|
{
|
|
gpuFuncTable()->setTo(src, s, cv::gpu::GpuMat(), stream);
|
|
}
|
|
|
|
void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
gpuFuncTable()->setTo(src, s, mask, stream);
|
|
}
|
|
|
|
void setTo(GpuMat& src, Scalar s)
|
|
{
|
|
setTo(src, s, 0);
|
|
}
|
|
|
|
void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
|
|
{
|
|
setTo(src, s, mask, 0);
|
|
}
|
|
}}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Error handling
|
|
|
|
void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func)
|
|
{
|
|
int code = CV_GpuApiCallError;
|
|
|
|
if (uncaught_exception())
|
|
{
|
|
const char* errorStr = cvErrorStr(code);
|
|
const char* function = func ? func : "unknown function";
|
|
|
|
cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line;
|
|
cerr.flush();
|
|
}
|
|
else
|
|
cv::error( cv::Exception(code, error_string, func, file, line) );
|
|
}
|