mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
680 lines
21 KiB
C++
680 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*//Implementation of the Gaussian mixture model background subtraction from:
|
|
//
|
|
//"Improved adaptive Gausian mixture model for background subtraction"
|
|
//Z.Zivkovic
|
|
//International Conference Pattern Recognition, UK, August, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
//The code is very fast and performs also shadow detection.
|
|
//Number of Gausssian components is adapted per pixel.
|
|
//
|
|
// and
|
|
//
|
|
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
|
|
//Z.Zivkovic, F. van der Heijden
|
|
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
|
|
//
|
|
//The algorithm similar to the standard Stauffer&Grimson algorithm with
|
|
//additional selection of the number of the Gaussian components based on:
|
|
//
|
|
//"Recursive unsupervised learning of finite mixture models "
|
|
//Z.Zivkovic, F.van der Heijden
|
|
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
|
|
//
|
|
//
|
|
//
|
|
// Example usage as part of the CvBGStatModel:
|
|
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
|
|
//
|
|
// //update for each frame
|
|
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
|
|
//
|
|
// //release at the program termination
|
|
// cvReleaseBGStatModel( &bg_model );
|
|
//
|
|
//Author: Z.Zivkovic, www.zoranz.net
|
|
//Date: 27-April-2005, Version:0.9
|
|
///////////*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#define CV_BG_MODEL_MOG2 3 /* "Mixture of Gaussians 2". */
|
|
|
|
/* default parameters of gaussian background detection algorithm */
|
|
#define CV_BGFG_MOG2_STD_THRESHOLD 4.0f /* lambda=2.5 is 99% */
|
|
#define CV_BGFG_MOG2_WINDOW_SIZE 500 /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
|
|
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD 0.9f /* threshold sum of weights for background test */
|
|
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE 3.0f /* lambda=2.5 is 99% */
|
|
#define CV_BGFG_MOG2_NGAUSSIANS 5 /* = K = number of Gaussians in mixture */
|
|
#define CV_BGFG_MOG2_SIGMA_INIT 15.0f
|
|
#define CV_BGFG_MOG2_MINAREA 15.0f
|
|
|
|
/* additional parameters */
|
|
#define CV_BGFG_MOG2_CT 0.05f /* complexity reduction prior constant 0 - no reduction of number of components*/
|
|
#define CV_BGFG_MOG2_SHADOW_VALUE 127 /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
|
|
#define CV_BGFG_MOG2_SHADOW_TAU 0.5f /* Tau - shadow threshold, see the paper for explanation*/
|
|
|
|
struct CvGaussBGStatModel2Params
|
|
{
|
|
bool bPostFiltering;//defult 1 - do postfiltering
|
|
double minArea; // for postfiltering
|
|
|
|
bool bShadowDetection;//default 1 - do shadow detection
|
|
bool bRemoveForeground;//default 0, set to 1 to remove foreground pixels from the image and return background image
|
|
bool bInit;//default 1, faster updates at start
|
|
|
|
/////////////////////////
|
|
//very important parameters - things you will change
|
|
////////////////////////
|
|
float fAlphaT;
|
|
//alpha - speed of update - if the time interval you want to average over is T
|
|
//set alpha=1/T. It is also usefull at start to make T slowly increase
|
|
//from 1 until the desired T
|
|
float fTb;
|
|
//Tb - threshold on the squared Mahalan. dist. to decide if it is well described
|
|
//by the background model or not. Related to Cthr from the paper.
|
|
//This does not influence the update of the background. A typical value could be 4 sigma
|
|
//and that is Tb=4*4=16;
|
|
|
|
/////////////////////////
|
|
//less important parameters - things you might change but be carefull
|
|
////////////////////////
|
|
float fTg;
|
|
//Tg - threshold on the squared Mahalan. dist. to decide
|
|
//when a sample is close to the existing components. If it is not close
|
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
|
//Smaller Tg leads to more generated components and higher Tg might make
|
|
//lead to small number of components but they can grow too large
|
|
float fTB;//1-cf from the paper
|
|
//TB - threshold when the component becomes significant enough to be included into
|
|
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
|
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
|
//it is considered foreground
|
|
float fSigma;
|
|
//initial standard deviation for the newly generated components.
|
|
//It will will influence the speed of adaptation. A good guess should be made.
|
|
//A simple way is to estimate the typical standard deviation from the images.
|
|
//I used here 10 as a reasonable value
|
|
float fCT;//CT - complexity reduction prior
|
|
//this is related to the number of samples needed to accept that a component
|
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
|
|
|
//even less important parameters
|
|
int nM;//max number of modes - const - 4 is usually enough
|
|
|
|
//shadow detection parameters
|
|
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
|
|
float fTau;
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
};
|
|
|
|
struct CvPBGMMGaussian
|
|
{
|
|
float sigma;
|
|
float muR;
|
|
float muG;
|
|
float muB;
|
|
float weight;
|
|
};
|
|
|
|
struct CvGaussBGStatModel2Data
|
|
{
|
|
int nWidth,nHeight,nSize,nNBands;//image info
|
|
// dynamic array for the mixture of Gaussians
|
|
std::vector<CvPBGMMGaussian> rGMM;
|
|
std::vector<uchar> rnUsedModes;//number of Gaussian components per pixel
|
|
};
|
|
|
|
//only foreground image is updated
|
|
//no filtering included
|
|
struct CvGaussBGModel2
|
|
{
|
|
CvGaussBGStatModel2Params params;
|
|
CvGaussBGStatModel2Data data;
|
|
int countFrames;
|
|
};
|
|
|
|
static int _icvRemoveShadowGMM(long posPixel,
|
|
float red, float green, float blue,
|
|
unsigned char nModes,
|
|
CvPBGMMGaussian* m_aGaussians,
|
|
float m_fTb,
|
|
float m_fTB,
|
|
float m_fTau)
|
|
{
|
|
//calculate distances to the modes (+ sort???)
|
|
//here we need to go in descending order!!!
|
|
long pos;
|
|
float tWeight = 0;
|
|
float numerator, denominator;
|
|
// check all the distributions, marked as background:
|
|
for (int iModes=0;iModes<nModes;iModes++)
|
|
{
|
|
pos=posPixel+iModes;
|
|
float var = m_aGaussians[pos].sigma;
|
|
float muR = m_aGaussians[pos].muR;
|
|
float muG = m_aGaussians[pos].muG;
|
|
float muB = m_aGaussians[pos].muB;
|
|
float weight = m_aGaussians[pos].weight;
|
|
tWeight += weight;
|
|
|
|
numerator = red * muR + green * muG + blue * muB;
|
|
denominator = muR * muR + muG * muG + muB * muB;
|
|
// no division by zero allowed
|
|
if (denominator == 0)
|
|
{
|
|
break;
|
|
};
|
|
float a = numerator / denominator;
|
|
|
|
// if tau < a < 1 then also check the color distortion
|
|
if ((a <= 1) && (a >= m_fTau))//m_nBeta=1
|
|
{
|
|
float dR=a * muR - red;
|
|
float dG=a * muG - green;
|
|
float dB=a * muB - blue;
|
|
|
|
//square distance -slower and less accurate
|
|
//float maxDistance = cvSqrt(m_fTb*var);
|
|
//if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance))
|
|
//circle
|
|
float dist=(dR*dR+dG*dG+dB*dB);
|
|
if (dist<m_fTb*var*a*a)
|
|
{
|
|
return 2;
|
|
}
|
|
};
|
|
if (tWeight > m_fTB)
|
|
{
|
|
break;
|
|
};
|
|
};
|
|
return 0;
|
|
}
|
|
|
|
static int _icvUpdatePixelBackgroundGMM(long posPixel,
|
|
float red, float green, float blue,
|
|
unsigned char* pModesUsed,
|
|
CvPBGMMGaussian* m_aGaussians,
|
|
int m_nM,
|
|
float m_fAlphaT,
|
|
float m_fTb,
|
|
float m_fTB,
|
|
float m_fTg,
|
|
float m_fSigma,
|
|
float m_fPrune)
|
|
{
|
|
//calculate distances to the modes (+ sort???)
|
|
//here we need to go in descending order!!!
|
|
|
|
long pos;
|
|
|
|
|
|
bool bFitsPDF=0;
|
|
bool bBackground=0;
|
|
|
|
float m_fOneMinAlpha=1-m_fAlphaT;
|
|
|
|
unsigned char nModes=*pModesUsed;
|
|
float totalWeight=0.0f;
|
|
|
|
//////
|
|
//go through all modes
|
|
for (int iModes=0;iModes<nModes;iModes++)
|
|
{
|
|
pos=posPixel+iModes;
|
|
float weight = m_aGaussians[pos].weight;
|
|
|
|
////
|
|
//fit not found yet
|
|
if (!bFitsPDF)
|
|
{
|
|
//check if it belongs to some of the modes
|
|
//calculate distance
|
|
float var = m_aGaussians[pos].sigma;
|
|
float muR = m_aGaussians[pos].muR;
|
|
float muG = m_aGaussians[pos].muG;
|
|
float muB = m_aGaussians[pos].muB;
|
|
|
|
float dR=muR - red;
|
|
float dG=muG - green;
|
|
float dB=muB - blue;
|
|
|
|
///////
|
|
//check if it fits the current mode (Factor * sigma)
|
|
|
|
//square distance -slower and less accurate
|
|
//float maxDistance = cvSqrt(m_fTg*var);
|
|
//if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance))
|
|
//circle
|
|
float dist=(dR*dR+dG*dG+dB*dB);
|
|
//background? - m_fTb
|
|
if ((totalWeight<m_fTB)&&(dist<m_fTb*var))
|
|
bBackground=1;
|
|
//check fit
|
|
if (dist<m_fTg*var)
|
|
{
|
|
/////
|
|
//belongs to the mode
|
|
bFitsPDF=1;
|
|
|
|
//update distribution
|
|
float k = m_fAlphaT/weight;
|
|
weight=m_fOneMinAlpha*weight+m_fPrune;
|
|
weight+=m_fAlphaT;
|
|
m_aGaussians[pos].muR = muR - k*(dR);
|
|
m_aGaussians[pos].muG = muG - k*(dG);
|
|
m_aGaussians[pos].muB = muB - k*(dB);
|
|
|
|
//limit update speed for cov matrice
|
|
//not needed
|
|
//k=k>20*m_fAlphaT?20*m_fAlphaT:k;
|
|
//float sigmanew = var + k*((0.33*(dR*dR+dG*dG+dB*dB))-var);
|
|
//float sigmanew = var + k*((dR*dR+dG*dG+dB*dB)-var);
|
|
//float sigmanew = var + k*((0.33*dist)-var);
|
|
float sigmanew = var + k*(dist-var);
|
|
//limit the variance
|
|
//m_aGaussians[pos].sigma = sigmanew>70?70:sigmanew;
|
|
//m_aGaussians[pos].sigma = sigmanew>5*m_fSigma?5*m_fSigma:sigmanew;
|
|
m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>5*m_fSigma?5*m_fSigma:sigmanew;
|
|
//m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>3*m_fSigma?3*m_fSigma:sigmanew;
|
|
//m_aGaussians[pos].sigma = m_fSigma;
|
|
//sort
|
|
//all other weights are at the same place and
|
|
//only the matched (iModes) is higher -> just find the new place for it
|
|
for (int iLocal = iModes;iLocal>0;iLocal--)
|
|
{
|
|
long posLocal=posPixel + iLocal;
|
|
if (weight < (m_aGaussians[posLocal-1].weight))
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//swap
|
|
CvPBGMMGaussian temp = m_aGaussians[posLocal];
|
|
m_aGaussians[posLocal] = m_aGaussians[posLocal-1];
|
|
m_aGaussians[posLocal-1] = temp;
|
|
}
|
|
}
|
|
|
|
//belongs to the mode
|
|
/////
|
|
}
|
|
else
|
|
{
|
|
weight=m_fOneMinAlpha*weight+m_fPrune;
|
|
//check prune
|
|
if (weight<-m_fPrune)
|
|
{
|
|
weight=0.0;
|
|
nModes--;
|
|
// bPrune=1;
|
|
//break;//the components are sorted so we can skip the rest
|
|
}
|
|
}
|
|
//check if it fits the current mode (2.5 sigma)
|
|
///////
|
|
}
|
|
//fit not found yet
|
|
/////
|
|
else
|
|
{
|
|
weight=m_fOneMinAlpha*weight+m_fPrune;
|
|
//check prune
|
|
if (weight<-m_fPrune)
|
|
{
|
|
weight=0.0;
|
|
nModes--;
|
|
}
|
|
}
|
|
totalWeight+=weight;
|
|
m_aGaussians[pos].weight=weight;
|
|
}
|
|
//go through all modes
|
|
//////
|
|
|
|
//renormalize weights
|
|
for (int iLocal = 0; iLocal < nModes; iLocal++)
|
|
{
|
|
m_aGaussians[posPixel+ iLocal].weight = m_aGaussians[posPixel+ iLocal].weight/totalWeight;
|
|
}
|
|
|
|
//make new mode if needed and exit
|
|
if (!bFitsPDF)
|
|
{
|
|
if (nModes==m_nM)
|
|
{
|
|
//replace the weakest
|
|
}
|
|
else
|
|
{
|
|
//add a new one
|
|
nModes++;
|
|
}
|
|
pos=posPixel+nModes-1;
|
|
|
|
if (nModes==1)
|
|
m_aGaussians[pos].weight=1;
|
|
else
|
|
m_aGaussians[pos].weight=m_fAlphaT;
|
|
|
|
//renormalize weights
|
|
int iLocal;
|
|
for (iLocal = 0; iLocal < nModes-1; iLocal++)
|
|
{
|
|
m_aGaussians[posPixel+ iLocal].weight *=m_fOneMinAlpha;
|
|
}
|
|
|
|
m_aGaussians[pos].muR=red;
|
|
m_aGaussians[pos].muG=green;
|
|
m_aGaussians[pos].muB=blue;
|
|
m_aGaussians[pos].sigma=m_fSigma;
|
|
|
|
//sort
|
|
//find the new place for it
|
|
for (iLocal = nModes-1;iLocal>0;iLocal--)
|
|
{
|
|
long posLocal=posPixel + iLocal;
|
|
if (m_fAlphaT < (m_aGaussians[posLocal-1].weight))
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//swap
|
|
CvPBGMMGaussian temp = m_aGaussians[posLocal];
|
|
m_aGaussians[posLocal] = m_aGaussians[posLocal-1];
|
|
m_aGaussians[posLocal-1] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
//set the number of modes
|
|
*pModesUsed=nModes;
|
|
|
|
return bBackground;
|
|
}
|
|
|
|
static void _icvReplacePixelBackgroundGMM(long pos,
|
|
unsigned char* pData,
|
|
CvPBGMMGaussian* m_aGaussians)
|
|
{
|
|
pData[0]=(unsigned char) m_aGaussians[pos].muR;
|
|
pData[1]=(unsigned char) m_aGaussians[pos].muG;
|
|
pData[2]=(unsigned char) m_aGaussians[pos].muB;
|
|
}
|
|
|
|
|
|
static void icvUpdatePixelBackgroundGMM(CvGaussBGStatModel2Data* pGMMData,CvGaussBGStatModel2Params* pGMM, float m_fAlphaT, unsigned char* data,unsigned char* output)
|
|
{
|
|
int size=pGMMData->nSize;
|
|
unsigned char* pDataCurrent=data;
|
|
unsigned char* pUsedModes=&pGMMData->rnUsedModes[0];
|
|
unsigned char* pDataOutput=output;
|
|
//some constants
|
|
int m_nM=pGMM->nM;
|
|
//float m_fAlphaT=pGMM->fAlphaT;
|
|
|
|
float m_fTb=pGMM->fTb;//Tb - threshold on the Mahalan. dist.
|
|
float m_fTB=pGMM->fTB;//1-TF from the paper
|
|
float m_fTg=pGMM->fTg;//Tg - when to generate a new component
|
|
float m_fSigma=pGMM->fSigma;//initial sigma
|
|
float m_fCT=pGMM->fCT;//CT - complexity reduction prior
|
|
float m_fPrune=-m_fAlphaT*m_fCT;
|
|
float m_fTau=pGMM->fTau;
|
|
CvPBGMMGaussian* m_aGaussians=&pGMMData->rGMM[0];
|
|
long posPixel=0;
|
|
bool m_bShadowDetection=pGMM->bShadowDetection;
|
|
unsigned char m_nShadowDetection=pGMM->nShadowDetection;
|
|
|
|
//go through the image
|
|
for (int i=0;i<size;i++)
|
|
{
|
|
// retrieve the colors
|
|
float red = pDataCurrent[0];
|
|
float green = pDataCurrent[1];
|
|
float blue = pDataCurrent[2];
|
|
|
|
//update model+ background subtract
|
|
int result = _icvUpdatePixelBackgroundGMM(posPixel, red, green, blue,pUsedModes,m_aGaussians,
|
|
m_nM,m_fAlphaT, m_fTb, m_fTB, m_fTg, m_fSigma, m_fPrune);
|
|
unsigned char nMLocal=*pUsedModes;
|
|
|
|
if (m_bShadowDetection)
|
|
if (!result)
|
|
{
|
|
result= _icvRemoveShadowGMM(posPixel, red, green, blue,nMLocal,m_aGaussians,
|
|
m_fTb,
|
|
m_fTB,
|
|
m_fTau);
|
|
}
|
|
|
|
|
|
switch (result)
|
|
{
|
|
case 0:
|
|
//foreground
|
|
(* pDataOutput)=255;
|
|
if (pGMM->bRemoveForeground)
|
|
{
|
|
_icvReplacePixelBackgroundGMM(posPixel,pDataCurrent,m_aGaussians);
|
|
}
|
|
break;
|
|
case 1:
|
|
//background
|
|
(* pDataOutput)=0;
|
|
break;
|
|
case 2:
|
|
//shadow
|
|
(* pDataOutput)=m_nShadowDetection;
|
|
if (pGMM->bRemoveForeground)
|
|
{
|
|
_icvReplacePixelBackgroundGMM(posPixel,pDataCurrent,m_aGaussians);
|
|
}
|
|
|
|
break;
|
|
}
|
|
posPixel+=m_nM;
|
|
pDataCurrent+=3;
|
|
pDataOutput++;
|
|
pUsedModes++;
|
|
}
|
|
}
|
|
|
|
|
|
namespace cv
|
|
{
|
|
|
|
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2()
|
|
{
|
|
model = 0;
|
|
initialize(Size(), 0);
|
|
}
|
|
|
|
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(double alphaT,
|
|
double sigma, int nmixtures, bool postFiltering, double minArea,
|
|
bool detectShadows, bool removeForeground, double Tb, double Tg,
|
|
double TB, double CT, int shadowValue, double tau)
|
|
{
|
|
model = 0;
|
|
initialize(Size(), alphaT, sigma, nmixtures, postFiltering, minArea,
|
|
detectShadows, removeForeground, Tb, Tg, TB, CT, shadowValue, tau);
|
|
}
|
|
|
|
|
|
void BackgroundSubtractorMOG2::initialize(Size frameSize, double alphaT,
|
|
double sigma, int nmixtures, bool postFiltering, double minArea,
|
|
bool detectShadows, bool removeForeground, double Tb, double Tg,
|
|
double TB, double CT, int shadowValue, double tau)
|
|
{
|
|
if(!model)
|
|
model = new CvGaussBGModel2;
|
|
|
|
CvGaussBGModel2* bg_model = (CvGaussBGModel2*)model;
|
|
|
|
bg_model->params.bRemoveForeground=removeForeground;
|
|
bg_model->params.bShadowDetection = detectShadows;
|
|
bg_model->params.bPostFiltering = postFiltering;
|
|
bg_model->params.minArea = minArea;
|
|
bg_model->params.nM = nmixtures;
|
|
bg_model->params.fTb = Tb;
|
|
bg_model->params.fTB = TB;
|
|
bg_model->params.fTg = Tg;
|
|
bg_model->params.fSigma = sigma;
|
|
bg_model->params.fAlphaT = alphaT;
|
|
bg_model->params.fCT = CT;
|
|
bg_model->params.nShadowDetection = shadowValue;
|
|
bg_model->params.fTau = tau;
|
|
|
|
int w = frameSize.width;
|
|
int h = frameSize.height;
|
|
int size = w*h;
|
|
|
|
if( (bg_model->data.nWidth != w ||
|
|
bg_model->data.nHeight != h) &&
|
|
w > 0 && h > 0 )
|
|
{
|
|
bg_model->data.nWidth=w;
|
|
bg_model->data.nHeight=h;
|
|
bg_model->data.nNBands=3;
|
|
bg_model->data.nSize=size;
|
|
|
|
//GMM for each pixel
|
|
bg_model->data.rGMM.resize(size * bg_model->params.nM);
|
|
}
|
|
//used modes per pixel
|
|
bg_model->data.rnUsedModes.resize(0);
|
|
bg_model->data.rnUsedModes.resize(size, (uchar)0);
|
|
bg_model->params.bInit = true;
|
|
bg_model->countFrames = 0;
|
|
}
|
|
|
|
|
|
BackgroundSubtractorMOG2::~BackgroundSubtractorMOG2()
|
|
{
|
|
delete (CvGaussBGModel2*)model;
|
|
}
|
|
|
|
void BackgroundSubtractorMOG2::operator()(const Mat& image0, Mat& fgmask0, double learningRate)
|
|
{
|
|
CvGaussBGModel2* bg_model = (CvGaussBGModel2*)model;
|
|
|
|
CV_Assert(bg_model != 0);
|
|
Mat image = image0, fgmask = fgmask0;
|
|
CV_Assert( image.type() == CV_8UC1 || image.type() == CV_8UC3 );
|
|
|
|
if( learningRate < 0 )
|
|
learningRate = bg_model->params.fAlphaT;
|
|
if( learningRate >= 1 )
|
|
{
|
|
learningRate = 1;
|
|
bg_model->params.bInit = true;
|
|
}
|
|
if( image.size() != Size(bg_model->data.nWidth, bg_model->data.nHeight) )
|
|
initialize(image.size(), learningRate, bg_model->params.fSigma,
|
|
bg_model->params.nM, bg_model->params.bPostFiltering,
|
|
bg_model->params.minArea, bg_model->params.bShadowDetection,
|
|
bg_model->params.bRemoveForeground,
|
|
bg_model->params.fTb, bg_model->params.fTg, bg_model->params.fTB,
|
|
bg_model->params.fCT, bg_model->params.nShadowDetection, bg_model->params.fTau);
|
|
|
|
//int i, j, k, n;
|
|
float alpha = (float)bg_model->params.fAlphaT;
|
|
bg_model->countFrames++;
|
|
|
|
if (bg_model->params.bInit)
|
|
{
|
|
//faster initial updates
|
|
float alphaInit = 1.0f/(2*bg_model->countFrames+1);
|
|
if( alphaInit > alpha )
|
|
alpha = alphaInit;
|
|
else
|
|
bg_model->params.bInit = false;
|
|
}
|
|
|
|
if( !image.isContinuous() || image.channels() != 3 )
|
|
{
|
|
image.release();
|
|
image.create(image0.size(), CV_8UC3);
|
|
if( image0.type() == image.type() )
|
|
image0.copyTo(image);
|
|
else
|
|
cvtColor(image0, image, CV_GRAY2BGR);
|
|
}
|
|
|
|
if( !fgmask.isContinuous() )
|
|
fgmask.release();
|
|
fgmask.create(image.size(), CV_8UC1);
|
|
|
|
icvUpdatePixelBackgroundGMM(&bg_model->data,&bg_model->params,alpha,image.data,fgmask.data);
|
|
|
|
if( bg_model->params.bPostFiltering )
|
|
{
|
|
//foreground filtering: filter out small regions
|
|
morphologyEx(fgmask, fgmask, CV_MOP_OPEN, Mat());
|
|
morphologyEx(fgmask, fgmask, CV_MOP_CLOSE, Mat());
|
|
|
|
vector<vector<Point> > contours;
|
|
findContours(fgmask, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
|
|
fgmask = Scalar::all(0);
|
|
|
|
for( size_t i = 0; i < contours.size(); i++ )
|
|
{
|
|
if( boundingRect(Mat(contours[i])).area() < bg_model->params.minArea )
|
|
continue;
|
|
drawContours(fgmask, contours, (int)i, Scalar::all(255), -1, 8, vector<Vec4i>(), 1);
|
|
}
|
|
}
|
|
|
|
fgmask.copyTo(fgmask0);
|
|
}
|
|
|
|
}
|
|
|
|
/* End of file. */
|