mirror of
https://github.com/opencv/opencv.git
synced 2025-01-09 12:58:04 +08:00
5f20e802d2
[GSOC] Speeding-up AKAZE, part #1 (#8869)
* ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS
added protective macros to always force macro expansion of arguments. This allows using CV_ENUM and CV_FLAGS with macro arguments.
* feature2d: unify perf test
use the same test for all detectors/descriptors we have.
* added AKAZE tests
* features2d: extend perf tests
* add BRISK, KAZE, MSER
* run all extract tests on AKAZE keypoints, so that the test si more comparable for the speed of extraction
* feature2d: rework opencl perf tests
use the same configuration as cpu tests
* feature2d: fix descriptors allocation for AKAZE and KAZE
fix crash when descriptors are UMat
* feature2d: name enum to fix build with older gcc
* Revert "ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS"
This reverts commit 19538cac1e
.
This wasn't a great idea after all. There is a lot of flags implemented as #define, that we don't want to expand.
* feature2d: fix expansion problems with CV_ENUM in perf
* expand arguments before passing them to CV_ENUM. This does not need modifications of CV_ENUM.
* added include guards to `perf_feature2d.hpp`
* feature2d: fix crash in AKAZE when using KAZE descriptors
* out-of-bound access in Get_MSURF_Descriptor_64
* this happened reliably when running on provided keypoints (not computed by the same instance)
* feature2d: added regression tests for AKAZE
* test with both MLDB and KAZE keypoints
* feature2d: do not compute keypoints orientation twice
* always compute keypoints orientation, when computing keypoints
* do not recompute keypoint orientation when computing descriptors
this allows to test detection and extraction separately
* features2d: fix crash in AKAZE
* out-of-bound reads near the image edge
* same as the bug in KAZE descriptors
* feature2d: refactor invariance testing
* split detectors and descriptors tests
* rewrite to google test to simplify debugging
* add tests for AKAZE and one test for ORB
* stitching: add tests with AKAZE feature finder
* added basic stitching cpu and ocl tests
* fix bug in AKAZE wrapper for stitching pipeline causing lots of
! OPENCV warning: getUMat()/getMat() call chain possible problem.
! Base object is dead, while nested/derived object is still alive or processed.
! Please check lifetime of UMat/Mat objects!
256 lines
9.3 KiB
C++
256 lines
9.3 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "test_invariance_utils.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using std::tr1::make_tuple;
|
|
using std::tr1::get;
|
|
using namespace testing;
|
|
|
|
#define SHOW_DEBUG_LOG 0
|
|
|
|
typedef std::tr1::tuple<std::string, Ptr<FeatureDetector>, float, float> String_FeatureDetector_Float_Float_t;
|
|
const static std::string IMAGE_TSUKUBA = "features2d/tsukuba.png";
|
|
const static std::string IMAGE_BIKES = "detectors_descriptors_evaluation/images_datasets/bikes/img1.png";
|
|
#define Value(...) Values(String_FeatureDetector_Float_Float_t(__VA_ARGS__))
|
|
|
|
static
|
|
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
|
|
const vector<KeyPoint>& keypoints1,
|
|
vector<DMatch>& matches)
|
|
{
|
|
vector<Point2f> points0;
|
|
KeyPoint::convert(keypoints0, points0);
|
|
Mat points0t;
|
|
if(H.empty())
|
|
points0t = Mat(points0);
|
|
else
|
|
perspectiveTransform(Mat(points0), points0t, H);
|
|
|
|
matches.clear();
|
|
vector<uchar> usedMask(keypoints1.size(), 0);
|
|
for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
|
|
{
|
|
int nearestPointIndex = -1;
|
|
float maxIntersectRatio = 0.f;
|
|
const float r0 = 0.5f * keypoints0[i0].size;
|
|
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
|
|
{
|
|
if(nearestPointIndex >= 0 && usedMask[i1])
|
|
continue;
|
|
|
|
float r1 = 0.5f * keypoints1[i1].size;
|
|
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
|
|
keypoints1[i1].pt, r1);
|
|
if(intersectRatio > maxIntersectRatio)
|
|
{
|
|
maxIntersectRatio = intersectRatio;
|
|
nearestPointIndex = static_cast<int>(i1);
|
|
}
|
|
}
|
|
|
|
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
|
|
if(nearestPointIndex >= 0)
|
|
usedMask[nearestPointIndex] = 1;
|
|
}
|
|
}
|
|
|
|
class DetectorInvariance : public TestWithParam<String_FeatureDetector_Float_Float_t>
|
|
{
|
|
protected:
|
|
virtual void SetUp() {
|
|
// Read test data
|
|
const std::string filename = cvtest::TS::ptr()->get_data_path() + get<0>(GetParam());
|
|
image0 = imread(filename);
|
|
ASSERT_FALSE(image0.empty()) << "couldn't read input image";
|
|
|
|
featureDetector = get<1>(GetParam());
|
|
minKeyPointMatchesRatio = get<2>(GetParam());
|
|
minInliersRatio = get<3>(GetParam());
|
|
}
|
|
|
|
Ptr<FeatureDetector> featureDetector;
|
|
float minKeyPointMatchesRatio;
|
|
float minInliersRatio;
|
|
Mat image0;
|
|
};
|
|
|
|
typedef DetectorInvariance DetectorScaleInvariance;
|
|
typedef DetectorInvariance DetectorRotationInvariance;
|
|
|
|
TEST_P(DetectorRotationInvariance, rotation)
|
|
{
|
|
Mat image1, mask1;
|
|
const int borderSize = 16;
|
|
Mat mask0(image0.size(), CV_8UC1, Scalar(0));
|
|
mask0(Rect(borderSize, borderSize, mask0.cols - 2*borderSize, mask0.rows - 2*borderSize)).setTo(Scalar(255));
|
|
|
|
vector<KeyPoint> keypoints0;
|
|
featureDetector->detect(image0, keypoints0, mask0);
|
|
EXPECT_GE(keypoints0.size(), 15u);
|
|
|
|
const int maxAngle = 360, angleStep = 15;
|
|
for(int angle = 0; angle < maxAngle; angle += angleStep)
|
|
{
|
|
Mat H = rotateImage(image0, mask0, static_cast<float>(angle), image1, mask1);
|
|
|
|
vector<KeyPoint> keypoints1;
|
|
featureDetector->detect(image1, keypoints1, mask1);
|
|
|
|
vector<DMatch> matches;
|
|
matchKeyPoints(keypoints0, H, keypoints1, matches);
|
|
|
|
int angleInliersCount = 0;
|
|
|
|
const float minIntersectRatio = 0.5f;
|
|
int keyPointMatchesCount = 0;
|
|
for(size_t m = 0; m < matches.size(); m++)
|
|
{
|
|
if(matches[m].distance < minIntersectRatio)
|
|
continue;
|
|
|
|
keyPointMatchesCount++;
|
|
|
|
// Check does this inlier have consistent angles
|
|
const float maxAngleDiff = 15.f; // grad
|
|
float angle0 = keypoints0[matches[m].queryIdx].angle;
|
|
float angle1 = keypoints1[matches[m].trainIdx].angle;
|
|
ASSERT_FALSE(angle0 == -1 || angle1 == -1) << "Given FeatureDetector is not rotation invariant, it can not be tested here.";
|
|
ASSERT_GE(angle0, 0.f);
|
|
ASSERT_LT(angle0, 360.f);
|
|
ASSERT_GE(angle1, 0.f);
|
|
ASSERT_LT(angle1, 360.f);
|
|
|
|
float rotAngle0 = angle0 + angle;
|
|
if(rotAngle0 >= 360.f)
|
|
rotAngle0 -= 360.f;
|
|
|
|
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
|
|
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
|
|
ASSERT_GE(angleDiff, 0.f);
|
|
bool isAngleCorrect = angleDiff < maxAngleDiff;
|
|
if(isAngleCorrect)
|
|
angleInliersCount++;
|
|
}
|
|
|
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
|
|
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio) << "angle: " << angle;
|
|
|
|
if(keyPointMatchesCount)
|
|
{
|
|
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
|
|
EXPECT_GE(angleInliersRatio, minInliersRatio) << "angle: " << angle;
|
|
}
|
|
#if SHOW_DEBUG_LOG
|
|
std::cout
|
|
<< "angle = " << angle
|
|
<< ", keypoints = " << keypoints1.size()
|
|
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio
|
|
<< ", angleInliersRatio = " << (keyPointMatchesCount ? (static_cast<float>(angleInliersCount) / keyPointMatchesCount) : 0)
|
|
<< std::endl;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
TEST_P(DetectorScaleInvariance, scale)
|
|
{
|
|
vector<KeyPoint> keypoints0;
|
|
featureDetector->detect(image0, keypoints0);
|
|
EXPECT_GE(keypoints0.size(), 15u);
|
|
|
|
for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
|
|
{
|
|
float scale = 1.f + scaleIdx * 0.5f;
|
|
Mat image1;
|
|
resize(image0, image1, Size(), 1./scale, 1./scale);
|
|
|
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
|
featureDetector->detect(image1, keypoints1);
|
|
EXPECT_GE(keypoints1.size(), 15u);
|
|
EXPECT_LE(keypoints1.size(), keypoints0.size()) << "Strange behavior of the detector. "
|
|
"It gives more points count in an image of the smaller size.";
|
|
|
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
|
|
vector<DMatch> matches;
|
|
// image1 is query image (it's reduced image0)
|
|
// image0 is train image
|
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
|
|
|
|
const float minIntersectRatio = 0.5f;
|
|
int keyPointMatchesCount = 0;
|
|
int scaleInliersCount = 0;
|
|
|
|
for(size_t m = 0; m < matches.size(); m++)
|
|
{
|
|
if(matches[m].distance < minIntersectRatio)
|
|
continue;
|
|
|
|
keyPointMatchesCount++;
|
|
|
|
// Check does this inlier have consistent sizes
|
|
const float maxSizeDiff = 0.8f;//0.9f; // grad
|
|
float size0 = keypoints0[matches[m].trainIdx].size;
|
|
float size1 = osiKeypoints1[matches[m].queryIdx].size;
|
|
ASSERT_GT(size0, 0);
|
|
ASSERT_GT(size1, 0);
|
|
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
|
|
scaleInliersCount++;
|
|
}
|
|
|
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
|
|
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio);
|
|
|
|
if(keyPointMatchesCount)
|
|
{
|
|
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
|
|
EXPECT_GE(scaleInliersRatio, minInliersRatio);
|
|
}
|
|
#if SHOW_DEBUG_LOG
|
|
std::cout
|
|
<< "scale = " << scale
|
|
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio
|
|
<< ", scaleInliersRatio = " << (keyPointMatchesCount ? static_cast<float>(scaleInliersCount) / keyPointMatchesCount : 0)
|
|
<< std::endl;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Detector's rotation invariance check
|
|
*/
|
|
|
|
INSTANTIATE_TEST_CASE_P(BRISK, DetectorRotationInvariance,
|
|
Value(IMAGE_TSUKUBA, BRISK::create(), 0.45f, 0.76f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ORB, DetectorRotationInvariance,
|
|
Value(IMAGE_TSUKUBA, ORB::create(), 0.5f, 0.76f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(AKAZE, DetectorRotationInvariance,
|
|
Value(IMAGE_TSUKUBA, AKAZE::create(), 0.5f, 0.76f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DetectorRotationInvariance,
|
|
Value(IMAGE_TSUKUBA, AKAZE::create(AKAZE::DESCRIPTOR_KAZE), 0.5f, 0.76f));
|
|
|
|
/*
|
|
* Detector's scale invariance check
|
|
*/
|
|
|
|
INSTANTIATE_TEST_CASE_P(BRISK, DetectorScaleInvariance,
|
|
Value(IMAGE_BIKES, BRISK::create(), 0.08f, 0.49f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ORB, DetectorScaleInvariance,
|
|
Value(IMAGE_BIKES, ORB::create(), 0.08f, 0.49f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(KAZE, DetectorScaleInvariance,
|
|
Value(IMAGE_BIKES, KAZE::create(), 0.08f, 0.49f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(AKAZE, DetectorScaleInvariance,
|
|
Value(IMAGE_BIKES, AKAZE::create(), 0.08f, 0.49f));
|
|
|
|
INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DetectorScaleInvariance,
|
|
Value(IMAGE_BIKES, AKAZE::create(AKAZE::DESCRIPTOR_KAZE), 0.08f, 0.49f));
|