mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
610 lines
21 KiB
C++
610 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "npy_blob.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
namespace opencv_test
|
|
{
|
|
|
|
using namespace std;
|
|
using namespace testing;
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
template<typename TStr>
|
|
static std::string _tf(TStr filename, bool inTorchDir = true, bool required = true)
|
|
{
|
|
String path = "dnn/";
|
|
if (inTorchDir)
|
|
path += "torch/";
|
|
path += filename;
|
|
return findDataFile(path, required);
|
|
}
|
|
|
|
TEST(Torch_Importer, simple_read)
|
|
{
|
|
Net net;
|
|
ASSERT_NO_THROW(net = readNetFromTorch(_tf("net_simple_net.txt"), false));
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
|
|
class Test_Torch_layers : public DNNTestLayer
|
|
{
|
|
public:
|
|
void runTorchNet(const String& prefix, String outLayerName = "",
|
|
bool check2ndBlob = false, bool isBinary = false, bool evaluate = true,
|
|
double l1 = 0.0, double lInf = 0.0)
|
|
{
|
|
String suffix = (isBinary) ? ".dat" : ".txt";
|
|
|
|
Mat inp, outRef;
|
|
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
|
|
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
|
|
|
|
checkBackend(backend, target, &inp, &outRef);
|
|
|
|
Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary, evaluate);
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
if (outLayerName.empty())
|
|
outLayerName = net.getLayerNames().back();
|
|
|
|
net.setInput(inp);
|
|
std::vector<Mat> outBlobs;
|
|
net.forward(outBlobs, outLayerName);
|
|
l1 = l1 ? l1 : default_l1;
|
|
lInf = lInf ? lInf : default_lInf;
|
|
normAssert(outRef, outBlobs[0], "", l1, lInf);
|
|
|
|
if (check2ndBlob && backend == DNN_BACKEND_OPENCV)
|
|
{
|
|
Mat out2 = outBlobs[1];
|
|
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
|
|
normAssert(out2, ref2, "", l1, lInf);
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_P(Test_Torch_layers, run_convolution)
|
|
{
|
|
// Output reference values are in range [23.4018, 72.0181]
|
|
double l1 = default_l1, lInf = default_lInf;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = 0.08;
|
|
lInf = 0.42;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
l1 = 0.08;
|
|
lInf = 0.5;
|
|
}
|
|
runTorchNet("net_conv", "", false, true, true, l1, lInf);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_pool_max)
|
|
{
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
|
|
double l1 = 0.0, lInf = 0.0;
|
|
runTorchNet("net_pool_max", "", true, false, true, l1, lInf);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_pool_ave)
|
|
{
|
|
runTorchNet("net_pool_ave");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_reshape_change_batch_size)
|
|
{
|
|
runTorchNet("net_reshape");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_reshape)
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
runTorchNet("net_reshape_batch");
|
|
runTorchNet("net_reshape_channels", "", false, true);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_reshape_single_sample)
|
|
{
|
|
// Reference output values in range [14.4586, 18.4492].
|
|
double l1 = default_l1, lInf = default_lInf;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = 0.033;
|
|
lInf = 0.05;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
l1 = 0.01;
|
|
}
|
|
runTorchNet("net_reshape_single_sample", "", false, false, true, l1, lInf);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_linear)
|
|
{
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
runTorchNet("net_linear_2d");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_concat)
|
|
{
|
|
runTorchNet("net_concat", "l5_torchMerge");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_depth_concat)
|
|
{
|
|
double lInf = 0.0;
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
lInf = 0.021;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
lInf = 0.03;
|
|
}
|
|
runTorchNet("net_depth_concat", "", false, true, true, 0.0, lInf);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_deconv)
|
|
{
|
|
runTorchNet("net_deconv");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_batch_norm)
|
|
{
|
|
runTorchNet("net_batch_norm", "", false, true);
|
|
runTorchNet("net_batch_norm_train", "", false, true, false);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_prelu)
|
|
{
|
|
runTorchNet("net_prelu");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_cadd_table)
|
|
{
|
|
runTorchNet("net_cadd_table");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_softmax)
|
|
{
|
|
runTorchNet("net_softmax");
|
|
runTorchNet("net_softmax_spatial");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_logsoftmax)
|
|
{
|
|
runTorchNet("net_logsoftmax");
|
|
runTorchNet("net_logsoftmax_spatial");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_lp_pooling_square)
|
|
{
|
|
runTorchNet("net_lp_pooling_square", "", false, true);
|
|
}
|
|
TEST_P(Test_Torch_layers, net_lp_pooling_power)
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
runTorchNet("net_lp_pooling_power", "", false, true);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_conv_gemm_lrn)
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
double l1 = 0.0, lInf = 0.0;
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
l1 = 0.046;
|
|
lInf = 0.023;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
l1 = 0.0042;
|
|
lInf = 0.021;
|
|
}
|
|
runTorchNet("net_conv_gemm_lrn", "", false, true, true, l1, lInf);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_inception_block)
|
|
{
|
|
runTorchNet("net_inception_block", "", false, true);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_normalize)
|
|
{
|
|
if(backend == DNN_BACKEND_CUDA)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* only L1 and L2 norms are supported */
|
|
runTorchNet("net_normalize", "", false, true);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_padding)
|
|
{
|
|
runTorchNet("net_padding", "", false, true);
|
|
runTorchNet("net_spatial_zero_padding", "", false, true);
|
|
runTorchNet("net_spatial_reflection_padding", "", false, true);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_non_spatial)
|
|
{
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
|
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
runTorchNet("net_non_spatial", "", false, true);
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, run_paralel)
|
|
{
|
|
if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU)
|
|
throw SkipTestException(""); // TODO: Check this
|
|
runTorchNet("net_parallel", "l5_torchMerge");
|
|
}
|
|
|
|
TEST_P(Test_Torch_layers, net_residual)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018050000
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL ||
|
|
target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#endif
|
|
runTorchNet("net_residual", "", false, true);
|
|
}
|
|
|
|
class Test_Torch_nets : public DNNTestLayer {};
|
|
|
|
TEST_P(Test_Torch_nets, OpenFace_accuracy)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
#endif
|
|
checkBackend();
|
|
|
|
const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false);
|
|
Net net = readNetFromTorch(model);
|
|
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat sample = imread(findDataFile("cv/shared/lena.png"));
|
|
Mat sampleF32(sample.size(), CV_32FC3);
|
|
sample.convertTo(sampleF32, sampleF32.type());
|
|
sampleF32 /= 255;
|
|
resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST);
|
|
|
|
Mat inputBlob = blobFromImage(sampleF32, 1.0, Size(), Scalar(), /*swapRB*/true);
|
|
|
|
net.setInput(inputBlob);
|
|
Mat out = net.forward();
|
|
|
|
// Reference output values are in range [-0.17212, 0.263492]
|
|
// on Myriad problem layer: l4_Pooling - does not use pads_begin
|
|
float l1 = 1e-5, lInf = 1e-3;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
{
|
|
l1 = 2e-3;
|
|
lInf = 5e-3;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
l1 = 0.0004;
|
|
lInf = 0.0012;
|
|
}
|
|
Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true);
|
|
normAssert(out, outRef, "", l1, lInf);
|
|
}
|
|
|
|
static Mat getSegmMask(const Mat& scores)
|
|
{
|
|
const int rows = scores.size[2];
|
|
const int cols = scores.size[3];
|
|
const int numClasses = scores.size[1];
|
|
|
|
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
|
|
Mat maxVal(rows, cols, CV_32FC1, Scalar(0));
|
|
for (int ch = 0; ch < numClasses; ch++)
|
|
{
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const float *ptrScore = scores.ptr<float>(0, ch, row);
|
|
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
|
|
float *ptrMaxVal = maxVal.ptr<float>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
if (ptrScore[col] > ptrMaxVal[col])
|
|
{
|
|
ptrMaxVal[col] = ptrScore[col];
|
|
ptrMaxCl[col] = (uchar)ch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return maxCl;
|
|
}
|
|
|
|
// Computer per-class intersection over union metric.
|
|
static void normAssertSegmentation(const Mat& ref, const Mat& test)
|
|
{
|
|
CV_Assert_N(ref.dims == 4, test.dims == 4);
|
|
const int numClasses = ref.size[1];
|
|
CV_Assert(numClasses == test.size[1]);
|
|
|
|
Mat refMask = getSegmMask(ref);
|
|
Mat testMask = getSegmMask(test);
|
|
EXPECT_EQ(countNonZero(refMask != testMask), 0);
|
|
}
|
|
|
|
TEST_P(Test_Torch_nets, ENet_accuracy)
|
|
{
|
|
applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
|
|
checkBackend();
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
throw SkipTestException("");
|
|
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020010000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#else
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU)
|
|
{
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
throw SkipTestException("");
|
|
}
|
|
#endif
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
{
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
throw SkipTestException("");
|
|
}
|
|
|
|
Net net;
|
|
{
|
|
const string model = findDataFile("dnn/Enet-model-best.net", false);
|
|
net = readNetFromTorch(model, true);
|
|
ASSERT_TRUE(!net.empty());
|
|
}
|
|
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat sample = imread(_tf("street.png", false));
|
|
Mat inputBlob = blobFromImage(sample, 1./255, Size(), Scalar(), /*swapRB*/true);
|
|
|
|
net.setInput(inputBlob, "");
|
|
Mat out = net.forward();
|
|
Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
|
|
// Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
|
|
// thresholds for ENet must be changed. Accuracy of results was checked on
|
|
// Cityscapes dataset and difference in mIOU with Torch is 10E-4%
|
|
normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
|
|
normAssertSegmentation(ref, out);
|
|
|
|
const int N = 3;
|
|
for (int i = 0; i < N; i++)
|
|
{
|
|
net.setInput(inputBlob, "");
|
|
Mat out = net.forward();
|
|
normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
|
|
normAssertSegmentation(ref, out);
|
|
}
|
|
}
|
|
|
|
// Check accuracy of style transfer models from https://github.com/jcjohnson/fast-neural-style
|
|
// th fast_neural_style.lua \
|
|
// -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \
|
|
// -output_image lena.png \
|
|
// -median_filter 0 \
|
|
// -image_size 0 \
|
|
// -model models/eccv16/starry_night.t7
|
|
// th fast_neural_style.lua \
|
|
// -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \
|
|
// -output_image lena.png \
|
|
// -median_filter 0 \
|
|
// -image_size 0 \
|
|
// -model models/instance_norm/feathers.t7
|
|
TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy)
|
|
{
|
|
#if defined INF_ENGINE_RELEASE
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
#endif
|
|
|
|
checkBackend();
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
#if INF_ENGINE_RELEASE <= 2018050000
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#endif
|
|
#endif
|
|
|
|
std::string models[] = {"dnn/fast_neural_style_eccv16_starry_night.t7",
|
|
"dnn/fast_neural_style_instance_norm_feathers.t7"};
|
|
std::string targets[] = {"dnn/lena_starry_night.png", "dnn/lena_feathers.png"};
|
|
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
const string model = findDataFile(models[i], false);
|
|
Net net = readNetFromTorch(model);
|
|
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat img = imread(findDataFile("dnn/googlenet_1.png"));
|
|
Mat inputBlob = blobFromImage(img, 1.0, Size(), Scalar(103.939, 116.779, 123.68), false);
|
|
|
|
net.setInput(inputBlob);
|
|
Mat out = net.forward();
|
|
|
|
// Deprocessing.
|
|
getPlane(out, 0, 0) += 103.939;
|
|
getPlane(out, 0, 1) += 116.779;
|
|
getPlane(out, 0, 2) += 123.68;
|
|
out = cv::min(cv::max(0, out), 255);
|
|
|
|
Mat ref = imread(findDataFile(targets[i]));
|
|
Mat refBlob = blobFromImage(ref, 1.0, Size(), Scalar(), false);
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
{
|
|
double normL1 = cvtest::norm(refBlob, out, cv::NORM_L1) / refBlob.total();
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
EXPECT_LE(normL1, 4.0f);
|
|
else
|
|
EXPECT_LE(normL1, 0.6f);
|
|
}
|
|
else if(target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
normAssert(out, refBlob, "", 0.6, 25);
|
|
}
|
|
else
|
|
normAssert(out, refBlob, "", 0.5, 1.1);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_nets, dnnBackendsAndTargets());
|
|
|
|
// Test a custom layer
|
|
// https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialUpSamplingNearest
|
|
class SpatialUpSamplingNearestLayer CV_FINAL : public Layer
|
|
{
|
|
public:
|
|
SpatialUpSamplingNearestLayer(const LayerParams ¶ms) : Layer(params)
|
|
{
|
|
scale = params.get<int>("scale_factor");
|
|
}
|
|
|
|
static Ptr<Layer> create(LayerParams& params)
|
|
{
|
|
return Ptr<Layer>(new SpatialUpSamplingNearestLayer(params));
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<std::vector<int> > &outputs,
|
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
|
|
{
|
|
std::vector<int> outShape(4);
|
|
outShape[0] = inputs[0][0]; // batch size
|
|
outShape[1] = inputs[0][1]; // number of channels
|
|
outShape[2] = scale * inputs[0][2];
|
|
outShape[3] = scale * inputs[0][3];
|
|
outputs.assign(1, outShape);
|
|
return false;
|
|
}
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
Mat& inp = inputs[0];
|
|
Mat& out = outputs[0];
|
|
const int outHeight = out.size[2];
|
|
const int outWidth = out.size[3];
|
|
for (size_t n = 0; n < inp.size[0]; ++n)
|
|
{
|
|
for (size_t ch = 0; ch < inp.size[1]; ++ch)
|
|
{
|
|
resize(getPlane(inp, n, ch), getPlane(out, n, ch),
|
|
Size(outWidth, outHeight), 0, 0, INTER_NEAREST);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
int scale;
|
|
};
|
|
|
|
TEST_P(Test_Torch_layers, upsampling_nearest)
|
|
{
|
|
// Test a custom layer.
|
|
CV_DNN_REGISTER_LAYER_CLASS(SpatialUpSamplingNearest, SpatialUpSamplingNearestLayer);
|
|
try
|
|
{
|
|
runTorchNet("net_spatial_upsampling_nearest", "", false, true);
|
|
}
|
|
catch (...)
|
|
{
|
|
LayerFactory::unregisterLayer("SpatialUpSamplingNearest");
|
|
throw;
|
|
}
|
|
LayerFactory::unregisterLayer("SpatialUpSamplingNearest");
|
|
|
|
// Test an implemented layer.
|
|
runTorchNet("net_spatial_upsampling_nearest", "", false, true);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, dnnBackendsAndTargets());
|
|
|
|
}
|