mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 06:53:50 +08:00
d976272d23
3D: Handle cases where the depth of Octree setting is too large * Handle cases where the depth setting is too large
114 lines
3.5 KiB
C++
114 lines
3.5 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
using namespace cv;
|
|
|
|
class OctreeTest: public testing::Test
|
|
{
|
|
protected:
|
|
void SetUp() override
|
|
{
|
|
pointCloudSize = 1000;
|
|
maxDepth = 18;
|
|
|
|
int scale;
|
|
Point3i pmin, pmax;
|
|
scale = 1<<20;
|
|
pmin = Point3i(-scale, -scale, -scale);
|
|
pmax = Point3i(scale, scale, scale);
|
|
|
|
RNG& rng_Point = theRNG(); // set random seed for fixing output 3D point.
|
|
|
|
// Generate 3D PointCloud
|
|
for(int i = 0; i < pointCloudSize; i++)
|
|
{
|
|
float _x = 10 * (float)rng_Point.uniform(pmin.x, pmax.x)/scale;
|
|
float _y = 10 * (float)rng_Point.uniform(pmin.y, pmax.y)/scale;
|
|
float _z = 10 * (float)rng_Point.uniform(pmin.z, pmax.z)/scale;
|
|
pointcloud.push_back(Point3f(_x, _y, _z));
|
|
}
|
|
|
|
// Generate Octree From PointCloud.
|
|
treeTest.create(pointcloud, maxDepth);
|
|
|
|
// Randomly generate another 3D point.
|
|
float _x = 10 * (float)rng_Point.uniform(pmin.x, pmax.x)/scale;
|
|
float _y = 10 * (float)rng_Point.uniform(pmin.y, pmax.y)/scale;
|
|
float _z = 10 * (float)rng_Point.uniform(pmin.z, pmax.z)/scale;
|
|
restPoint = Point3f(_x, _y, _z);
|
|
|
|
}
|
|
|
|
public:
|
|
std::vector<Point3f> pointcloud;
|
|
int pointCloudSize;
|
|
Point3f restPoint;
|
|
Octree treeTest;
|
|
|
|
private:
|
|
int maxDepth;
|
|
};
|
|
|
|
TEST_F(OctreeTest, BasicFunctionTest)
|
|
{
|
|
// Check if the point in Bound.
|
|
EXPECT_TRUE(treeTest.isPointInBound(restPoint));
|
|
EXPECT_FALSE(treeTest.isPointInBound(restPoint + Point3f(20, 20, 20)));
|
|
|
|
// insert, delete Test.
|
|
EXPECT_FALSE(treeTest.deletePoint(restPoint));
|
|
|
|
EXPECT_THROW(treeTest.insertPoint(restPoint + Point3f(20, 20, 20)), cv::Exception);
|
|
EXPECT_NO_THROW(treeTest.insertPoint(restPoint));
|
|
|
|
EXPECT_TRUE(treeTest.deletePoint(restPoint));
|
|
|
|
EXPECT_FALSE(treeTest.empty());
|
|
EXPECT_NO_THROW(treeTest.clear());
|
|
EXPECT_TRUE(treeTest.empty());
|
|
|
|
}
|
|
|
|
TEST_F(OctreeTest, RadiusSearchTest)
|
|
{
|
|
float radius = 2.0f;
|
|
std::vector<Point3f> outputPoints;
|
|
std::vector<float> outputSquareDist;
|
|
EXPECT_NO_THROW(treeTest.radiusNNSearch(restPoint, radius, outputPoints, outputSquareDist));
|
|
|
|
EXPECT_FLOAT_EQ(outputPoints[0].x, -8.88461112976f);
|
|
EXPECT_FLOAT_EQ(outputPoints[0].y, -1.881799697875f);
|
|
EXPECT_FLOAT_EQ(outputPoints[1].x, -8.405818939208f);
|
|
EXPECT_FLOAT_EQ(outputPoints[1].y, -2.991247177124f);
|
|
EXPECT_FLOAT_EQ(outputPoints[2].x, -8.1184864044189f);
|
|
EXPECT_FLOAT_EQ(outputPoints[2].y, -0.528564453125f);
|
|
EXPECT_FLOAT_EQ(outputPoints[3].x, -6.551313400268f);
|
|
EXPECT_FLOAT_EQ(outputPoints[3].y, -0.708484649658f);
|
|
}
|
|
|
|
TEST_F(OctreeTest, KNNSearchTest)
|
|
{
|
|
int K = 10;
|
|
std::vector<Point3f> outputPoints;
|
|
std::vector<float> outputSquareDist;
|
|
EXPECT_NO_THROW(treeTest.KNNSearch(restPoint, K, outputPoints, outputSquareDist));
|
|
|
|
EXPECT_FLOAT_EQ(outputPoints[0].x, -8.118486404418f);
|
|
EXPECT_FLOAT_EQ(outputPoints[0].y, -0.528564453125f);
|
|
EXPECT_FLOAT_EQ(outputPoints[1].x, -8.405818939208f);
|
|
EXPECT_FLOAT_EQ(outputPoints[1].y, -2.991247177124f);
|
|
EXPECT_FLOAT_EQ(outputPoints[2].x, -8.88461112976f);
|
|
EXPECT_FLOAT_EQ(outputPoints[2].y, -1.881799697875f);
|
|
EXPECT_FLOAT_EQ(outputPoints[3].x, -6.551313400268f);
|
|
EXPECT_FLOAT_EQ(outputPoints[3].y, -0.708484649658f);
|
|
}
|
|
|
|
|
|
} // namespace
|
|
} // opencv_test
|