opencv/samples/python2/kmeans.py
Andrey Kamaev e75df56317 Unified handling of InputOutputArrays in Python wrapper generator
This makes arguments of type InputOutputArray required in python unless they
have a default value in C++.

As result following python functions changes signatures in non-trivial way:

* calcOpticalFlowFarneback
* calcOpticalFlowPyrLK
* calibrateCamera
* findContours
* findTransformECC
* floodFill
* kmeans
* PCACompute
* stereoCalibrate

And the following functions become return their modified inputs as a return
value:

* accumulate
* accumulateProduct
* accumulateSquare
* accumulateWeighted
* circle
* completeSymm
* cornerSubPix
* drawChessboardCorners
* drawContours
* drawDataMatrixCodes
* ellipse
* fillConvexPoly
* fillPoly
* filterSpeckles
* grabCut
* insertChannel
* line
* patchNaNs
* polylines
* randn
* randShuffle
* randu
* rectangle
* setIdentity
* updateMotionHistory
* validateDisparity
* watershed
2013-03-15 17:44:49 +04:00

47 lines
1.1 KiB
Python
Executable File

#!/usr/bin/env python
'''
K-means clusterization sample.
Usage:
kmeans.py
Keyboard shortcuts:
ESC - exit
space - generate new distribution
'''
import numpy as np
import cv2
from gaussian_mix import make_gaussians
if __name__ == '__main__':
cluster_n = 5
img_size = 512
print __doc__
# generating bright palette
colors = np.zeros((1, cluster_n, 3), np.uint8)
colors[0,:] = 255
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n)
colors = cv2.cvtColor(colors, cv2.COLOR_HSV2BGR)[0]
while True:
print 'sampling distributions...'
points, _ = make_gaussians(cluster_n, img_size)
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
img = np.zeros((img_size, img_size, 3), np.uint8)
for (x, y), label in zip(np.int32(points), labels.ravel()):
c = map(int, colors[label])
cv2.circle(img, (x, y), 1, c, -1)
cv2.imshow('gaussian mixture', img)
ch = 0xFF & cv2.waitKey(0)
if ch == 27:
break
cv2.destroyAllWindows()