opencv/modules/core/test/test_intrin.cpp

888 lines
25 KiB
C++

#include "test_intrin_utils.hpp"
#include <climits>
using namespace cv;
namespace cvtest { namespace hal {
template<typename T> static inline void EXPECT_COMPARE_EQ_(const T a, const T b);
template<> inline void EXPECT_COMPARE_EQ_<float>(const float a, const float b)
{
EXPECT_FLOAT_EQ( a, b );
}
template<> inline void EXPECT_COMPARE_EQ_<double>(const double a, const double b)
{
EXPECT_DOUBLE_EQ( a, b );
}
template<typename R> struct TheTest
{
typedef typename R::lane_type LaneType;
template <typename T1, typename T2>
static inline void EXPECT_COMPARE_EQ(const T1 a, const T2 b)
{
EXPECT_COMPARE_EQ_<LaneType>((LaneType)a, (LaneType)b);
}
TheTest & test_loadstore()
{
AlignedData<R> data;
AlignedData<R> out;
// check if addresses are aligned and unaligned respectively
EXPECT_EQ((size_t)0, (size_t)&data.a.d % 16);
EXPECT_NE((size_t)0, (size_t)&data.u.d % 16);
EXPECT_EQ((size_t)0, (size_t)&out.a.d % 16);
EXPECT_NE((size_t)0, (size_t)&out.u.d % 16);
// check some initialization methods
R r1 = data.a;
R r2 = v_load(data.u.d);
R r3 = v_load_aligned(data.a.d);
R r4(r2);
EXPECT_EQ(data.a[0], r1.get0());
EXPECT_EQ(data.u[0], r2.get0());
EXPECT_EQ(data.a[0], r3.get0());
EXPECT_EQ(data.u[0], r4.get0());
// check some store methods
out.u.clear();
out.a.clear();
v_store(out.u.d, r1);
v_store_aligned(out.a.d, r2);
EXPECT_EQ(data.a, out.a);
EXPECT_EQ(data.u, out.u);
// check more store methods
Data<R> d, res(0);
R r5 = d;
v_store_high(res.mid(), r5);
v_store_low(res.d, r5);
EXPECT_EQ(d, res);
// check halves load correctness
res.clear();
R r6 = v_load_halves(d.d, d.mid());
v_store(res.d, r6);
EXPECT_EQ(d, res);
// zero, all
Data<R> resZ = V_RegTrait128<LaneType>::zero();
Data<R> resV = V_RegTrait128<LaneType>::all(8);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ((LaneType)0, resZ[i]);
EXPECT_EQ((LaneType)8, resV[i]);
}
// reinterpret_as
v_uint8x16 vu8 = v_reinterpret_as_u8(r1); out.a.clear(); v_store((uchar*)out.a.d, vu8); EXPECT_EQ(data.a, out.a);
v_int8x16 vs8 = v_reinterpret_as_s8(r1); out.a.clear(); v_store((schar*)out.a.d, vs8); EXPECT_EQ(data.a, out.a);
v_uint16x8 vu16 = v_reinterpret_as_u16(r1); out.a.clear(); v_store((ushort*)out.a.d, vu16); EXPECT_EQ(data.a, out.a);
v_int16x8 vs16 = v_reinterpret_as_s16(r1); out.a.clear(); v_store((short*)out.a.d, vs16); EXPECT_EQ(data.a, out.a);
v_uint32x4 vu32 = v_reinterpret_as_u32(r1); out.a.clear(); v_store((unsigned*)out.a.d, vu32); EXPECT_EQ(data.a, out.a);
v_int32x4 vs32 = v_reinterpret_as_s32(r1); out.a.clear(); v_store((int*)out.a.d, vs32); EXPECT_EQ(data.a, out.a);
v_uint64x2 vu64 = v_reinterpret_as_u64(r1); out.a.clear(); v_store((uint64*)out.a.d, vu64); EXPECT_EQ(data.a, out.a);
v_int64x2 vs64 = v_reinterpret_as_s64(r1); out.a.clear(); v_store((int64*)out.a.d, vs64); EXPECT_EQ(data.a, out.a);
v_float32x4 vf32 = v_reinterpret_as_f32(r1); out.a.clear(); v_store((float*)out.a.d, vf32); EXPECT_EQ(data.a, out.a);
#if CV_SIMD128_64F
v_float64x2 vf64 = v_reinterpret_as_f64(r1); out.a.clear(); v_store((double*)out.a.d, vf64); EXPECT_EQ(data.a, out.a);
#endif
return *this;
}
TheTest & test_interleave()
{
Data<R> data1, data2, data3, data4;
data2 += 20;
data3 += 40;
data4 += 60;
R a = data1, b = data2, c = data3;
R d = data1, e = data2, f = data3, g = data4;
LaneType buf3[R::nlanes * 3];
LaneType buf4[R::nlanes * 4];
v_store_interleave(buf3, a, b, c);
v_store_interleave(buf4, d, e, f, g);
Data<R> z(0);
a = b = c = d = e = f = g = z;
v_load_deinterleave(buf3, a, b, c);
v_load_deinterleave(buf4, d, e, f, g);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(data1, Data<R>(a));
EXPECT_EQ(data2, Data<R>(b));
EXPECT_EQ(data3, Data<R>(c));
EXPECT_EQ(data1, Data<R>(d));
EXPECT_EQ(data2, Data<R>(e));
EXPECT_EQ(data3, Data<R>(f));
EXPECT_EQ(data4, Data<R>(g));
}
return *this;
}
// v_expand and v_load_expand
TheTest & test_expand()
{
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
Data<R> dataA;
R a = dataA;
Data<Rx2> resB = v_load_expand(dataA.d);
Rx2 c, d;
v_expand(a, c, d);
Data<Rx2> resC = c, resD = d;
const int n = Rx2::nlanes;
for (int i = 0; i < n; ++i)
{
EXPECT_EQ(dataA[i], resB[i]);
EXPECT_EQ(dataA[i], resC[i]);
EXPECT_EQ(dataA[i + n], resD[i]);
}
return *this;
}
TheTest & test_expand_q()
{
typedef typename V_RegTrait128<LaneType>::q_reg Rx4;
Data<R> data;
Data<Rx4> out = v_load_expand_q(data.d);
const int n = Rx4::nlanes;
for (int i = 0; i < n; ++i)
EXPECT_EQ(data[i], out[i]);
return *this;
}
TheTest & test_addsub()
{
Data<R> dataA, dataB;
dataB.reverse();
R a = dataA, b = dataB;
Data<R> resC = a + b, resD = a - b;
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] + dataB[i]), resC[i]);
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] - dataB[i]), resD[i]);
}
return *this;
}
TheTest & test_addsub_wrap()
{
Data<R> dataA, dataB;
dataB.reverse();
R a = dataA, b = dataB;
Data<R> resC = v_add_wrap(a, b),
resD = v_sub_wrap(a, b);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ((LaneType)(dataA[i] + dataB[i]), resC[i]);
EXPECT_EQ((LaneType)(dataA[i] - dataB[i]), resD[i]);
}
return *this;
}
TheTest & test_mul()
{
Data<R> dataA, dataB;
dataB.reverse();
R a = dataA, b = dataB;
Data<R> resC = a * b;
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i] * dataB[i], resC[i]);
}
return *this;
}
TheTest & test_div()
{
Data<R> dataA, dataB;
dataB.reverse();
R a = dataA, b = dataB;
Data<R> resC = a / b;
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i] / dataB[i], resC[i]);
}
return *this;
}
TheTest & test_mul_expand()
{
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
Data<R> dataA, dataB(2);
R a = dataA, b = dataB;
Rx2 c, d;
v_mul_expand(a, b, c, d);
Data<Rx2> resC = c, resD = d;
const int n = R::nlanes / 2;
for (int i = 0; i < n; ++i)
{
EXPECT_EQ((typename Rx2::lane_type)dataA[i] * dataB[i], resC[i]);
EXPECT_EQ((typename Rx2::lane_type)dataA[i + n] * dataB[i + n], resD[i]);
}
return *this;
}
template <int s>
TheTest & test_shift()
{
Data<R> dataA;
R a = dataA;
Data<R> resB = a << s, resC = v_shl<s>(a), resD = a >> s, resE = v_shr<s>(a);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i] << s, resB[i]);
EXPECT_EQ(dataA[i] << s, resC[i]);
EXPECT_EQ(dataA[i] >> s, resD[i]);
EXPECT_EQ(dataA[i] >> s, resE[i]);
}
return *this;
}
TheTest & test_cmp()
{
Data<R> dataA, dataB;
dataB.reverse();
dataB += 1;
R a = dataA, b = dataB;
Data<R> resC = (a == b);
Data<R> resD = (a != b);
Data<R> resE = (a > b);
Data<R> resF = (a >= b);
Data<R> resG = (a < b);
Data<R> resH = (a <= b);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i] == dataB[i], resC[i] != 0);
EXPECT_EQ(dataA[i] != dataB[i], resD[i] != 0);
EXPECT_EQ(dataA[i] > dataB[i], resE[i] != 0);
EXPECT_EQ(dataA[i] >= dataB[i], resF[i] != 0);
EXPECT_EQ(dataA[i] < dataB[i], resG[i] != 0);
EXPECT_EQ(dataA[i] <= dataB[i], resH[i] != 0);
}
return *this;
}
TheTest & test_dot_prod()
{
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
Data<R> dataA, dataB(2);
R a = dataA, b = dataB;
Data<Rx2> res = v_dotprod(a, b);
const int n = R::nlanes / 2;
for (int i = 0; i < n; ++i)
{
EXPECT_EQ(dataA[i*2] * dataB[i*2] + dataA[i*2 + 1] * dataB[i*2 + 1], res[i]);
}
return *this;
}
TheTest & test_logic()
{
Data<R> dataA, dataB(2);
R a = dataA, b = dataB;
Data<R> resC = a & b, resD = a | b, resE = a ^ b, resF = ~a;
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i] & dataB[i], resC[i]);
EXPECT_EQ(dataA[i] | dataB[i], resD[i]);
EXPECT_EQ(dataA[i] ^ dataB[i], resE[i]);
EXPECT_EQ((LaneType)~dataA[i], resF[i]);
}
return *this;
}
TheTest & test_sqrt_abs()
{
Data<R> dataA, dataD;
dataD *= -1.0;
R a = dataA, d = dataD;
Data<R> resB = v_sqrt(a), resC = v_invsqrt(a), resE = v_abs(d);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_COMPARE_EQ((float)std::sqrt(dataA[i]), (float)resB[i]);
EXPECT_COMPARE_EQ(1/(float)std::sqrt(dataA[i]), (float)resC[i]);
EXPECT_COMPARE_EQ((float)abs(dataA[i]), (float)resE[i]);
}
return *this;
}
TheTest & test_min_max()
{
Data<R> dataA, dataB;
dataB.reverse();
R a = dataA, b = dataB;
Data<R> resC = v_min(a, b), resD = v_max(a, b);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(std::min(dataA[i], dataB[i]), resC[i]);
EXPECT_EQ(std::max(dataA[i], dataB[i]), resD[i]);
}
return *this;
}
TheTest & test_absdiff()
{
typedef typename V_RegTrait128<LaneType>::u_reg Ru;
typedef typename Ru::lane_type u_type;
Data<R> dataA(std::numeric_limits<LaneType>::max()),
dataB(std::numeric_limits<LaneType>::min());
dataA[0] = (LaneType)-1;
dataB[0] = 1;
dataA[1] = 2;
dataB[1] = (LaneType)-2;
R a = dataA, b = dataB;
Data<Ru> resC = v_absdiff(a, b);
const u_type mask = std::numeric_limits<LaneType>::is_signed ? (u_type)(1 << (sizeof(u_type)*8 - 1)) : 0;
for (int i = 0; i < Ru::nlanes; ++i)
{
u_type uA = dataA[i] ^ mask;
u_type uB = dataB[i] ^ mask;
EXPECT_EQ(uA > uB ? uA - uB : uB - uA, resC[i]);
}
return *this;
}
TheTest & test_float_absdiff()
{
Data<R> dataA(std::numeric_limits<LaneType>::max()),
dataB(std::numeric_limits<LaneType>::min());
dataA[0] = -1;
dataB[0] = 1;
dataA[1] = 2;
dataB[1] = -2;
R a = dataA, b = dataB;
Data<R> resC = v_absdiff(a, b);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i] > dataB[i] ? dataA[i] - dataB[i] : dataB[i] - dataA[i], resC[i]);
}
return *this;
}
TheTest & test_reduce()
{
Data<R> dataA;
R a = dataA;
EXPECT_EQ((LaneType)1, v_reduce_min(a));
EXPECT_EQ((LaneType)R::nlanes, v_reduce_max(a));
EXPECT_EQ((LaneType)(1 + R::nlanes)*2, v_reduce_sum(a));
return *this;
}
TheTest & test_mask()
{
Data<R> dataA, dataB, dataC, dataD(1), dataE(2);
dataA[1] *= (LaneType)-1;
dataC *= (LaneType)-1;
R a = dataA, b = dataB, c = dataC, d = dataD, e = dataE;
int m = v_signmask(a);
EXPECT_EQ(2, m);
EXPECT_EQ(false, v_check_all(a));
EXPECT_EQ(false, v_check_all(b));
EXPECT_EQ(true, v_check_all(c));
EXPECT_EQ(true, v_check_any(a));
EXPECT_EQ(false, v_check_any(b));
EXPECT_EQ(true, v_check_any(c));
typedef V_TypeTraits<LaneType> Traits;
typedef typename Traits::int_type int_type;
R f = v_select(b, d, e);
Data<R> resF = f;
for (int i = 0; i < R::nlanes; ++i)
{
int_type m2 = Traits::reinterpret_int(dataB[i]);
EXPECT_EQ((Traits::reinterpret_int(dataD[i]) & m2)
| (Traits::reinterpret_int(dataE[i]) & ~m2),
Traits::reinterpret_int(resF[i]));
}
return *this;
}
template <int s>
TheTest & test_pack()
{
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
typedef typename Rx2::lane_type w_type;
Data<Rx2> dataA, dataB;
dataA += std::numeric_limits<LaneType>::is_signed ? -10 : 10;
dataB *= 10;
Rx2 a = dataA, b = dataB;
Data<R> resC = v_pack(a, b);
Data<R> resD = v_rshr_pack<s>(a, b);
Data<R> resE(0);
v_pack_store(resE.d, b);
Data<R> resF(0);
v_rshr_pack_store<s>(resF.d, b);
const int n = Rx2::nlanes;
const w_type add = (w_type)1 << (s - 1);
for (int i = 0; i < n; ++i)
{
EXPECT_EQ(saturate_cast<LaneType>(dataA[i]), resC[i]);
EXPECT_EQ(saturate_cast<LaneType>(dataB[i]), resC[i + n]);
EXPECT_EQ(saturate_cast<LaneType>((dataA[i] + add) >> s), resD[i]);
EXPECT_EQ(saturate_cast<LaneType>((dataB[i] + add) >> s), resD[i + n]);
EXPECT_EQ(saturate_cast<LaneType>(dataB[i]), resE[i]);
EXPECT_EQ((LaneType)0, resE[i + n]);
EXPECT_EQ(saturate_cast<LaneType>((dataB[i] + add) >> s), resF[i]);
EXPECT_EQ((LaneType)0, resF[i + n]);
}
return *this;
}
template <int s>
TheTest & test_pack_u()
{
typedef typename V_TypeTraits<LaneType>::w_type LaneType_w;
typedef typename V_RegTrait128<LaneType_w>::int_reg Ri2;
typedef typename Ri2::lane_type w_type;
Data<Ri2> dataA, dataB;
dataA += -10;
dataB *= 10;
Ri2 a = dataA, b = dataB;
Data<R> resC = v_pack_u(a, b);
Data<R> resD = v_rshr_pack_u<s>(a, b);
Data<R> resE(0);
v_pack_u_store(resE.d, b);
Data<R> resF(0);
v_rshr_pack_u_store<s>(resF.d, b);
const int n = Ri2::nlanes;
const w_type add = (w_type)1 << (s - 1);
for (int i = 0; i < n; ++i)
{
EXPECT_EQ(saturate_cast<LaneType>(dataA[i]), resC[i]);
EXPECT_EQ(saturate_cast<LaneType>(dataB[i]), resC[i + n]);
EXPECT_EQ(saturate_cast<LaneType>((dataA[i] + add) >> s), resD[i]);
EXPECT_EQ(saturate_cast<LaneType>((dataB[i] + add) >> s), resD[i + n]);
EXPECT_EQ(saturate_cast<LaneType>(dataB[i]), resE[i]);
EXPECT_EQ((LaneType)0, resE[i + n]);
EXPECT_EQ(saturate_cast<LaneType>((dataB[i] + add) >> s), resF[i]);
EXPECT_EQ((LaneType)0, resF[i + n]);
}
return *this;
}
TheTest & test_unpack()
{
Data<R> dataA, dataB;
dataB *= 10;
R a = dataA, b = dataB;
R c, d, e, f, lo, hi;
v_zip(a, b, c, d);
v_recombine(a, b, e, f);
lo = v_combine_low(a, b);
hi = v_combine_high(a, b);
Data<R> resC = c, resD = d, resE = e, resF = f, resLo = lo, resHi = hi;
const int n = R::nlanes/2;
for (int i = 0; i < n; ++i)
{
EXPECT_EQ(dataA[i], resC[i*2]);
EXPECT_EQ(dataB[i], resC[i*2+1]);
EXPECT_EQ(dataA[i+n], resD[i*2]);
EXPECT_EQ(dataB[i+n], resD[i*2+1]);
EXPECT_EQ(dataA[i], resE[i]);
EXPECT_EQ(dataB[i], resE[i+n]);
EXPECT_EQ(dataA[i+n], resF[i]);
EXPECT_EQ(dataB[i+n], resF[i+n]);
EXPECT_EQ(dataA[i], resLo[i]);
EXPECT_EQ(dataB[i], resLo[i+n]);
EXPECT_EQ(dataA[i+n], resHi[i]);
EXPECT_EQ(dataB[i+n], resHi[i+n]);
}
return *this;
}
template<int s>
TheTest & test_extract()
{
Data<R> dataA, dataB;
dataB *= 10;
R a = dataA, b = dataB;
Data<R> resC = v_extract<s>(a, b);
for (int i = 0; i < R::nlanes; ++i)
{
if (i + s >= R::nlanes)
EXPECT_EQ(dataB[i - R::nlanes + s], resC[i]);
else
EXPECT_EQ(dataA[i + s], resC[i]);
}
return *this;
}
TheTest & test_float_math()
{
typedef typename V_RegTrait128<LaneType>::int_reg Ri;
Data<R> data1, data2, data3;
data1 *= 1.1;
data2 += 10;
R a1 = data1, a2 = data2, a3 = data3;
Data<Ri> resB = v_round(a1),
resC = v_trunc(a1),
resD = v_floor(a1),
resE = v_ceil(a1);
Data<R> resF = v_magnitude(a1, a2),
resG = v_sqr_magnitude(a1, a2),
resH = v_muladd(a1, a2, a3);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(cvRound(data1[i]), resB[i]);
EXPECT_EQ((typename Ri::lane_type)data1[i], resC[i]);
EXPECT_EQ(cvFloor(data1[i]), resD[i]);
EXPECT_EQ(cvCeil(data1[i]), resE[i]);
EXPECT_COMPARE_EQ(std::sqrt(data1[i]*data1[i] + data2[i]*data2[i]), resF[i]);
EXPECT_COMPARE_EQ(data1[i]*data1[i] + data2[i]*data2[i], resG[i]);
EXPECT_COMPARE_EQ(data1[i]*data2[i] + data3[i], resH[i]);
}
return *this;
}
TheTest & test_float_cvt32()
{
typedef v_float32x4 Rt;
Data<R> dataA;
dataA *= 1.1;
R a = dataA;
Rt b = v_cvt_f32(a);
Data<Rt> resB = b;
int n = std::min<int>(Rt::nlanes, R::nlanes);
for (int i = 0; i < n; ++i)
{
EXPECT_EQ((typename Rt::lane_type)dataA[i], resB[i]);
}
return *this;
}
TheTest & test_float_cvt64()
{
#if CV_SIMD128_64F
typedef v_float64x2 Rt;
Data<R> dataA;
dataA *= 1.1;
R a = dataA;
Rt b = v_cvt_f64(a);
Data<Rt> resB = b;
int n = std::min<int>(Rt::nlanes, R::nlanes);
for (int i = 0; i < n; ++i)
{
EXPECT_EQ((typename Rt::lane_type)dataA[i], resB[i]);
}
#endif
return *this;
}
TheTest & test_matmul()
{
Data<R> dataV, dataA, dataB, dataC, dataD;
dataB.reverse();
dataC += 2;
dataD *= 0.3;
R v = dataV, a = dataA, b = dataB, c = dataC, d = dataD;
Data<R> res = v_matmul(v, a, b, c, d);
for (int i = 0; i < R::nlanes; ++i)
{
LaneType val = dataV[0] * dataA[i]
+ dataV[1] * dataB[i]
+ dataV[2] * dataC[i]
+ dataV[3] * dataD[i];
EXPECT_DOUBLE_EQ(val, res[i]);
}
return *this;
}
TheTest & test_transpose()
{
Data<R> dataA, dataB, dataC, dataD;
dataB *= 5;
dataC *= 10;
dataD *= 15;
R a = dataA, b = dataB, c = dataC, d = dataD;
R e, f, g, h;
v_transpose4x4(a, b, c, d,
e, f, g, h);
Data<R> res[4] = {e, f, g, h};
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ(dataA[i], res[i][0]);
EXPECT_EQ(dataB[i], res[i][1]);
EXPECT_EQ(dataC[i], res[i][2]);
EXPECT_EQ(dataD[i], res[i][3]);
}
return *this;
}
};
//============= 8-bit integer =====================================================================
TEST(hal_intrin, uint8x16) {
TheTest<v_uint8x16>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_expand_q()
.test_addsub()
.test_addsub_wrap()
.test_cmp()
.test_logic()
.test_min_max()
.test_absdiff()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
.test_pack_u<1>().test_pack_u<2>().test_pack_u<3>().test_pack_u<8>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
;
}
TEST(hal_intrin, int8x16) {
TheTest<v_int8x16>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_expand_q()
.test_addsub()
.test_addsub_wrap()
.test_cmp()
.test_logic()
.test_min_max()
.test_absdiff()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
;
}
//============= 16-bit integer =====================================================================
TEST(hal_intrin, uint16x8) {
TheTest<v_uint16x8>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_addsub_wrap()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
.test_pack_u<1>().test_pack_u<2>().test_pack_u<7>().test_pack_u<16>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
;
}
TEST(hal_intrin, int16x8) {
TheTest<v_int16x8>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_addsub_wrap()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_dot_prod()
.test_logic()
.test_min_max()
.test_absdiff()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
;
}
//============= 32-bit integer =====================================================================
TEST(hal_intrin, uint32x4) {
TheTest<v_uint32x4>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_mul()
.test_mul_expand()
.test_cmp()
.test_shift<1>()
.test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_transpose()
;
}
TEST(hal_intrin, int32x4) {
TheTest<v_int32x4>()
.test_loadstore()
.test_interleave()
.test_expand()
.test_addsub()
.test_mul()
.test_cmp()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_min_max()
.test_absdiff()
.test_reduce()
.test_mask()
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
.test_unpack()
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
.test_float_cvt32()
.test_float_cvt64()
.test_transpose()
;
}
//============= 64-bit integer =====================================================================
TEST(hal_intrin, uint64x2) {
TheTest<v_uint64x2>()
.test_loadstore()
.test_addsub()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_extract<0>().test_extract<1>()
;
}
TEST(hal_intrin, int64x2) {
TheTest<v_int64x2>()
.test_loadstore()
.test_addsub()
.test_shift<1>().test_shift<8>()
.test_logic()
.test_extract<0>().test_extract<1>()
;
}
//============= Floating point =====================================================================
TEST(hal_intrin, float32x4) {
TheTest<v_float32x4>()
.test_loadstore()
.test_interleave()
.test_addsub()
.test_mul()
.test_div()
.test_cmp()
.test_sqrt_abs()
.test_min_max()
.test_float_absdiff()
.test_reduce()
.test_mask()
.test_unpack()
.test_float_math()
.test_float_cvt64()
.test_matmul()
.test_transpose()
;
}
#if CV_SIMD128_64F
TEST(hal_intrin, float64x2) {
TheTest<v_float64x2>()
.test_loadstore()
.test_addsub()
.test_mul()
.test_div()
.test_cmp()
.test_sqrt_abs()
.test_min_max()
.test_float_absdiff()
.test_mask()
.test_unpack()
.test_float_math()
.test_float_cvt32()
;
}
#endif
};
};