mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 06:10:02 +08:00
4067 lines
112 KiB
C++
4067 lines
112 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
/* default alignment for dynamic data strucutures, resided in storages. */
|
|
#define CV_STRUCT_ALIGN ((int)sizeof(double))
|
|
|
|
/* default storage block size */
|
|
#define CV_STORAGE_BLOCK_SIZE ((1<<16) - 128)
|
|
|
|
#define ICV_FREE_PTR(storage) \
|
|
((schar*)(storage)->top + (storage)->block_size - (storage)->free_space)
|
|
|
|
#define ICV_ALIGNED_SEQ_BLOCK_SIZE \
|
|
(int)cvAlign(sizeof(CvSeqBlock), CV_STRUCT_ALIGN)
|
|
|
|
CV_INLINE int
|
|
cvAlignLeft( int size, int align )
|
|
{
|
|
return size & -align;
|
|
}
|
|
|
|
#define CV_GET_LAST_ELEM( seq, block ) \
|
|
((block)->data + ((block)->count - 1)*((seq)->elem_size))
|
|
|
|
#define CV_SWAP_ELEMS(a,b,elem_size) \
|
|
{ \
|
|
int k; \
|
|
for( k = 0; k < elem_size; k++ ) \
|
|
{ \
|
|
char t0 = (a)[k]; \
|
|
char t1 = (b)[k]; \
|
|
(a)[k] = t1; \
|
|
(b)[k] = t0; \
|
|
} \
|
|
}
|
|
|
|
#define ICV_SHIFT_TAB_MAX 32
|
|
static const schar icvPower2ShiftTab[] =
|
|
{
|
|
0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5
|
|
};
|
|
|
|
/****************************************************************************************\
|
|
* Functions for manipulating memory storage - list of memory blocks *
|
|
\****************************************************************************************/
|
|
|
|
/* Initialize allocated storage: */
|
|
static void
|
|
icvInitMemStorage( CvMemStorage* storage, int block_size )
|
|
{
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( block_size <= 0 )
|
|
block_size = CV_STORAGE_BLOCK_SIZE;
|
|
|
|
block_size = cvAlign( block_size, CV_STRUCT_ALIGN );
|
|
assert( sizeof(CvMemBlock) % CV_STRUCT_ALIGN == 0 );
|
|
|
|
memset( storage, 0, sizeof( *storage ));
|
|
storage->signature = CV_STORAGE_MAGIC_VAL;
|
|
storage->block_size = block_size;
|
|
}
|
|
|
|
|
|
/* Create root memory storage: */
|
|
CV_IMPL CvMemStorage*
|
|
cvCreateMemStorage( int block_size )
|
|
{
|
|
CvMemStorage* storage = (CvMemStorage *)cvAlloc( sizeof( CvMemStorage ));
|
|
icvInitMemStorage( storage, block_size );
|
|
return storage;
|
|
}
|
|
|
|
|
|
/* Create child memory storage: */
|
|
CV_IMPL CvMemStorage *
|
|
cvCreateChildMemStorage( CvMemStorage * parent )
|
|
{
|
|
if( !parent )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
CvMemStorage* storage = cvCreateMemStorage(parent->block_size);
|
|
storage->parent = parent;
|
|
|
|
return storage;
|
|
}
|
|
|
|
|
|
/* Release all blocks of the storage (or return them to parent, if any): */
|
|
static void
|
|
icvDestroyMemStorage( CvMemStorage* storage )
|
|
{
|
|
int k = 0;
|
|
|
|
CvMemBlock *block;
|
|
CvMemBlock *dst_top = 0;
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( storage->parent )
|
|
dst_top = storage->parent->top;
|
|
|
|
for( block = storage->bottom; block != 0; k++ )
|
|
{
|
|
CvMemBlock *temp = block;
|
|
|
|
block = block->next;
|
|
if( storage->parent )
|
|
{
|
|
if( dst_top )
|
|
{
|
|
temp->prev = dst_top;
|
|
temp->next = dst_top->next;
|
|
if( temp->next )
|
|
temp->next->prev = temp;
|
|
dst_top = dst_top->next = temp;
|
|
}
|
|
else
|
|
{
|
|
dst_top = storage->parent->bottom = storage->parent->top = temp;
|
|
temp->prev = temp->next = 0;
|
|
storage->free_space = storage->block_size - sizeof( *temp );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cvFree( &temp );
|
|
}
|
|
}
|
|
|
|
storage->top = storage->bottom = 0;
|
|
storage->free_space = 0;
|
|
}
|
|
|
|
|
|
/* Release memory storage: */
|
|
CV_IMPL void
|
|
cvReleaseMemStorage( CvMemStorage** storage )
|
|
{
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
CvMemStorage* st = *storage;
|
|
*storage = 0;
|
|
if( st )
|
|
{
|
|
icvDestroyMemStorage( st );
|
|
cvFree( &st );
|
|
}
|
|
}
|
|
|
|
|
|
/* Clears memory storage (return blocks to the parent, if any): */
|
|
CV_IMPL void
|
|
cvClearMemStorage( CvMemStorage * storage )
|
|
{
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( storage->parent )
|
|
icvDestroyMemStorage( storage );
|
|
else
|
|
{
|
|
storage->top = storage->bottom;
|
|
storage->free_space = storage->bottom ? storage->block_size - sizeof(CvMemBlock) : 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Moves stack pointer to next block.
|
|
If no blocks, allocate new one and link it to the storage: */
|
|
static void
|
|
icvGoNextMemBlock( CvMemStorage * storage )
|
|
{
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( !storage->top || !storage->top->next )
|
|
{
|
|
CvMemBlock *block;
|
|
|
|
if( !(storage->parent) )
|
|
{
|
|
block = (CvMemBlock *)cvAlloc( storage->block_size );
|
|
}
|
|
else
|
|
{
|
|
CvMemStorage *parent = storage->parent;
|
|
CvMemStoragePos parent_pos;
|
|
|
|
cvSaveMemStoragePos( parent, &parent_pos );
|
|
icvGoNextMemBlock( parent );
|
|
|
|
block = parent->top;
|
|
cvRestoreMemStoragePos( parent, &parent_pos );
|
|
|
|
if( block == parent->top ) /* the single allocated block */
|
|
{
|
|
assert( parent->bottom == block );
|
|
parent->top = parent->bottom = 0;
|
|
parent->free_space = 0;
|
|
}
|
|
else
|
|
{
|
|
/* cut the block from the parent's list of blocks */
|
|
parent->top->next = block->next;
|
|
if( block->next )
|
|
block->next->prev = parent->top;
|
|
}
|
|
}
|
|
|
|
/* link block */
|
|
block->next = 0;
|
|
block->prev = storage->top;
|
|
|
|
if( storage->top )
|
|
storage->top->next = block;
|
|
else
|
|
storage->top = storage->bottom = block;
|
|
}
|
|
|
|
if( storage->top->next )
|
|
storage->top = storage->top->next;
|
|
storage->free_space = storage->block_size - sizeof(CvMemBlock);
|
|
assert( storage->free_space % CV_STRUCT_ALIGN == 0 );
|
|
}
|
|
|
|
|
|
/* Remember memory storage position: */
|
|
CV_IMPL void
|
|
cvSaveMemStoragePos( const CvMemStorage * storage, CvMemStoragePos * pos )
|
|
{
|
|
if( !storage || !pos )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
pos->top = storage->top;
|
|
pos->free_space = storage->free_space;
|
|
}
|
|
|
|
|
|
/* Restore memory storage position: */
|
|
CV_IMPL void
|
|
cvRestoreMemStoragePos( CvMemStorage * storage, CvMemStoragePos * pos )
|
|
{
|
|
if( !storage || !pos )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( pos->free_space > storage->block_size )
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
/*
|
|
// this breaks icvGoNextMemBlock, so comment it off for now
|
|
if( storage->parent && (!pos->top || pos->top->next) )
|
|
{
|
|
CvMemBlock* save_bottom;
|
|
if( !pos->top )
|
|
save_bottom = 0;
|
|
else
|
|
{
|
|
save_bottom = storage->bottom;
|
|
storage->bottom = pos->top->next;
|
|
pos->top->next = 0;
|
|
storage->bottom->prev = 0;
|
|
}
|
|
icvDestroyMemStorage( storage );
|
|
storage->bottom = save_bottom;
|
|
}*/
|
|
|
|
storage->top = pos->top;
|
|
storage->free_space = pos->free_space;
|
|
|
|
if( !storage->top )
|
|
{
|
|
storage->top = storage->bottom;
|
|
storage->free_space = storage->top ? storage->block_size - sizeof(CvMemBlock) : 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Allocate continuous buffer of the specified size in the storage: */
|
|
CV_IMPL void*
|
|
cvMemStorageAlloc( CvMemStorage* storage, size_t size )
|
|
{
|
|
schar *ptr = 0;
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
|
|
|
if( size > INT_MAX )
|
|
CV_Error( CV_StsOutOfRange, "Too large memory block is requested" );
|
|
|
|
assert( storage->free_space % CV_STRUCT_ALIGN == 0 );
|
|
|
|
if( (size_t)storage->free_space < size )
|
|
{
|
|
size_t max_free_space = cvAlignLeft(storage->block_size - sizeof(CvMemBlock), CV_STRUCT_ALIGN);
|
|
if( max_free_space < size )
|
|
CV_Error( CV_StsOutOfRange, "requested size is negative or too big" );
|
|
|
|
icvGoNextMemBlock( storage );
|
|
}
|
|
|
|
ptr = ICV_FREE_PTR(storage);
|
|
assert( (size_t)ptr % CV_STRUCT_ALIGN == 0 );
|
|
storage->free_space = cvAlignLeft(storage->free_space - (int)size, CV_STRUCT_ALIGN );
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
CV_IMPL CvString
|
|
cvMemStorageAllocString( CvMemStorage* storage, const char* ptr, int len )
|
|
{
|
|
CvString str;
|
|
|
|
str.len = len >= 0 ? len : (int)strlen(ptr);
|
|
str.ptr = (char*)cvMemStorageAlloc( storage, str.len + 1 );
|
|
memcpy( str.ptr, ptr, str.len );
|
|
str.ptr[str.len] = '\0';
|
|
|
|
return str;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Sequence implementation *
|
|
\****************************************************************************************/
|
|
|
|
/* Create empty sequence: */
|
|
CV_IMPL CvSeq *
|
|
cvCreateSeq( int seq_flags, size_t header_size, size_t elem_size, CvMemStorage* storage )
|
|
{
|
|
CvSeq *seq = 0;
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( header_size < sizeof( CvSeq ) || elem_size <= 0 )
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
/* allocate sequence header */
|
|
seq = (CvSeq*)cvMemStorageAlloc( storage, header_size );
|
|
memset( seq, 0, header_size );
|
|
|
|
seq->header_size = (int)header_size;
|
|
seq->flags = (seq_flags & ~CV_MAGIC_MASK) | CV_SEQ_MAGIC_VAL;
|
|
{
|
|
int elemtype = CV_MAT_TYPE(seq_flags);
|
|
int typesize = CV_ELEM_SIZE(elemtype);
|
|
|
|
if( elemtype != CV_SEQ_ELTYPE_GENERIC && elemtype != CV_USRTYPE1 &&
|
|
typesize != 0 && typesize != (int)elem_size )
|
|
CV_Error( CV_StsBadSize,
|
|
"Specified element size doesn't match to the size of the specified element type "
|
|
"(try to use 0 for element type)" );
|
|
}
|
|
seq->elem_size = (int)elem_size;
|
|
seq->storage = storage;
|
|
|
|
cvSetSeqBlockSize( seq, (int)((1 << 10)/elem_size) );
|
|
|
|
return seq;
|
|
}
|
|
|
|
|
|
/* adjusts <delta_elems> field of sequence. It determines how much the sequence
|
|
grows if there are no free space inside the sequence buffers */
|
|
CV_IMPL void
|
|
cvSetSeqBlockSize( CvSeq *seq, int delta_elements )
|
|
{
|
|
int elem_size;
|
|
int useful_block_size;
|
|
|
|
if( !seq || !seq->storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( delta_elements < 0 )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
useful_block_size = cvAlignLeft(seq->storage->block_size - sizeof(CvMemBlock) -
|
|
sizeof(CvSeqBlock), CV_STRUCT_ALIGN);
|
|
elem_size = seq->elem_size;
|
|
|
|
if( delta_elements == 0 )
|
|
{
|
|
delta_elements = (1 << 10) / elem_size;
|
|
delta_elements = MAX( delta_elements, 1 );
|
|
}
|
|
if( delta_elements * elem_size > useful_block_size )
|
|
{
|
|
delta_elements = useful_block_size / elem_size;
|
|
if( delta_elements == 0 )
|
|
CV_Error( CV_StsOutOfRange, "Storage block size is too small "
|
|
"to fit the sequence elements" );
|
|
}
|
|
|
|
seq->delta_elems = delta_elements;
|
|
}
|
|
|
|
|
|
/* Find a sequence element by its index: */
|
|
CV_IMPL schar*
|
|
cvGetSeqElem( const CvSeq *seq, int index )
|
|
{
|
|
CvSeqBlock *block;
|
|
int count, total = seq->total;
|
|
|
|
if( (unsigned)index >= (unsigned)total )
|
|
{
|
|
index += index < 0 ? total : 0;
|
|
index -= index >= total ? total : 0;
|
|
if( (unsigned)index >= (unsigned)total )
|
|
return 0;
|
|
}
|
|
|
|
block = seq->first;
|
|
if( index + index <= total )
|
|
{
|
|
while( index >= (count = block->count) )
|
|
{
|
|
block = block->next;
|
|
index -= count;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
block = block->prev;
|
|
total -= block->count;
|
|
}
|
|
while( index < total );
|
|
index -= total;
|
|
}
|
|
|
|
return block->data + index * seq->elem_size;
|
|
}
|
|
|
|
|
|
/* Calculate index of a sequence element: */
|
|
CV_IMPL int
|
|
cvSeqElemIdx( const CvSeq* seq, const void* _element, CvSeqBlock** _block )
|
|
{
|
|
const schar *element = (const schar *)_element;
|
|
int elem_size;
|
|
int id = -1;
|
|
CvSeqBlock *first_block;
|
|
CvSeqBlock *block;
|
|
|
|
if( !seq || !element )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
block = first_block = seq->first;
|
|
elem_size = seq->elem_size;
|
|
|
|
for( ;; )
|
|
{
|
|
if( (unsigned)(element - block->data) < (unsigned) (block->count * elem_size) )
|
|
{
|
|
if( _block )
|
|
*_block = block;
|
|
if( elem_size <= ICV_SHIFT_TAB_MAX && (id = icvPower2ShiftTab[elem_size - 1]) >= 0 )
|
|
id = (int)((size_t)(element - block->data) >> id);
|
|
else
|
|
id = (int)((size_t)(element - block->data) / elem_size);
|
|
id += block->start_index - seq->first->start_index;
|
|
break;
|
|
}
|
|
block = block->next;
|
|
if( block == first_block )
|
|
break;
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
|
|
CV_IMPL int
|
|
cvSliceLength( CvSlice slice, const CvSeq* seq )
|
|
{
|
|
int total = seq->total;
|
|
int length = slice.end_index - slice.start_index;
|
|
|
|
if( length != 0 )
|
|
{
|
|
if( slice.start_index < 0 )
|
|
slice.start_index += total;
|
|
if( slice.end_index <= 0 )
|
|
slice.end_index += total;
|
|
|
|
length = slice.end_index - slice.start_index;
|
|
}
|
|
|
|
while( length < 0 )
|
|
length += total;
|
|
if( length > total )
|
|
length = total;
|
|
|
|
return length;
|
|
}
|
|
|
|
|
|
/* Copy all sequence elements into single continuous array: */
|
|
CV_IMPL void*
|
|
cvCvtSeqToArray( const CvSeq *seq, void *array, CvSlice slice )
|
|
{
|
|
int elem_size, total;
|
|
CvSeqReader reader;
|
|
char *dst = (char*)array;
|
|
|
|
if( !seq || !array )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
total = cvSliceLength( slice, seq )*elem_size;
|
|
|
|
if( total == 0 )
|
|
return 0;
|
|
|
|
cvStartReadSeq( seq, &reader, 0 );
|
|
cvSetSeqReaderPos( &reader, slice.start_index, 0 );
|
|
|
|
do
|
|
{
|
|
int count = (int)(reader.block_max - reader.ptr);
|
|
if( count > total )
|
|
count = total;
|
|
|
|
memcpy( dst, reader.ptr, count );
|
|
dst += count;
|
|
reader.block = reader.block->next;
|
|
reader.ptr = reader.block->data;
|
|
reader.block_max = reader.ptr + reader.block->count*elem_size;
|
|
total -= count;
|
|
}
|
|
while( total > 0 );
|
|
|
|
return array;
|
|
}
|
|
|
|
|
|
/* Construct a sequence from an array without copying any data.
|
|
NB: The resultant sequence cannot grow beyond its initial size: */
|
|
CV_IMPL CvSeq*
|
|
cvMakeSeqHeaderForArray( int seq_flags, int header_size, int elem_size,
|
|
void *array, int total, CvSeq *seq, CvSeqBlock * block )
|
|
{
|
|
CvSeq* result = 0;
|
|
|
|
if( elem_size <= 0 || header_size < (int)sizeof( CvSeq ) || total < 0 )
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
if( !seq || ((!array || !block) && total > 0) )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
memset( seq, 0, header_size );
|
|
|
|
seq->header_size = header_size;
|
|
seq->flags = (seq_flags & ~CV_MAGIC_MASK) | CV_SEQ_MAGIC_VAL;
|
|
{
|
|
int elemtype = CV_MAT_TYPE(seq_flags);
|
|
int typesize = CV_ELEM_SIZE(elemtype);
|
|
|
|
if( elemtype != CV_SEQ_ELTYPE_GENERIC &&
|
|
typesize != 0 && typesize != elem_size )
|
|
CV_Error( CV_StsBadSize,
|
|
"Element size doesn't match to the size of predefined element type "
|
|
"(try to use 0 for sequence element type)" );
|
|
}
|
|
seq->elem_size = elem_size;
|
|
seq->total = total;
|
|
seq->block_max = seq->ptr = (schar *) array + total * elem_size;
|
|
|
|
if( total > 0 )
|
|
{
|
|
seq->first = block;
|
|
block->prev = block->next = block;
|
|
block->start_index = 0;
|
|
block->count = total;
|
|
block->data = (schar *) array;
|
|
}
|
|
|
|
result = seq;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* The function allocates space for at least one more sequence element.
|
|
If there are free sequence blocks (seq->free_blocks != 0)
|
|
they are reused, otherwise the space is allocated in the storage: */
|
|
static void
|
|
icvGrowSeq( CvSeq *seq, int in_front_of )
|
|
{
|
|
CvSeqBlock *block;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
block = seq->free_blocks;
|
|
|
|
if( !block )
|
|
{
|
|
int elem_size = seq->elem_size;
|
|
int delta_elems = seq->delta_elems;
|
|
CvMemStorage *storage = seq->storage;
|
|
|
|
if( seq->total >= delta_elems*4 )
|
|
cvSetSeqBlockSize( seq, delta_elems*2 );
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "The sequence has NULL storage pointer" );
|
|
|
|
/* If there is a free space just after last allocated block
|
|
and it is big enough then enlarge the last block.
|
|
This can happen only if the new block is added to the end of sequence: */
|
|
if( (unsigned)(ICV_FREE_PTR(storage) - seq->block_max) < CV_STRUCT_ALIGN &&
|
|
storage->free_space >= seq->elem_size && !in_front_of )
|
|
{
|
|
int delta = storage->free_space / elem_size;
|
|
|
|
delta = MIN( delta, delta_elems ) * elem_size;
|
|
seq->block_max += delta;
|
|
storage->free_space = cvAlignLeft((int)(((schar*)storage->top + storage->block_size) -
|
|
seq->block_max), CV_STRUCT_ALIGN );
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
int delta = elem_size * delta_elems + ICV_ALIGNED_SEQ_BLOCK_SIZE;
|
|
|
|
/* Try to allocate <delta_elements> elements: */
|
|
if( storage->free_space < delta )
|
|
{
|
|
int small_block_size = MAX(1, delta_elems/3)*elem_size +
|
|
ICV_ALIGNED_SEQ_BLOCK_SIZE;
|
|
/* try to allocate smaller part */
|
|
if( storage->free_space >= small_block_size + CV_STRUCT_ALIGN )
|
|
{
|
|
delta = (storage->free_space - ICV_ALIGNED_SEQ_BLOCK_SIZE)/seq->elem_size;
|
|
delta = delta*seq->elem_size + ICV_ALIGNED_SEQ_BLOCK_SIZE;
|
|
}
|
|
else
|
|
{
|
|
icvGoNextMemBlock( storage );
|
|
assert( storage->free_space >= delta );
|
|
}
|
|
}
|
|
|
|
block = (CvSeqBlock*)cvMemStorageAlloc( storage, delta );
|
|
block->data = (schar*)cvAlignPtr( block + 1, CV_STRUCT_ALIGN );
|
|
block->count = delta - ICV_ALIGNED_SEQ_BLOCK_SIZE;
|
|
block->prev = block->next = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
seq->free_blocks = block->next;
|
|
}
|
|
|
|
if( !(seq->first) )
|
|
{
|
|
seq->first = block;
|
|
block->prev = block->next = block;
|
|
}
|
|
else
|
|
{
|
|
block->prev = seq->first->prev;
|
|
block->next = seq->first;
|
|
block->prev->next = block->next->prev = block;
|
|
}
|
|
|
|
/* For free blocks the <count> field means
|
|
* total number of bytes in the block.
|
|
*
|
|
* For used blocks it means current number
|
|
* of sequence elements in the block:
|
|
*/
|
|
assert( block->count % seq->elem_size == 0 && block->count > 0 );
|
|
|
|
if( !in_front_of )
|
|
{
|
|
seq->ptr = block->data;
|
|
seq->block_max = block->data + block->count;
|
|
block->start_index = block == block->prev ? 0 :
|
|
block->prev->start_index + block->prev->count;
|
|
}
|
|
else
|
|
{
|
|
int delta = block->count / seq->elem_size;
|
|
block->data += block->count;
|
|
|
|
if( block != block->prev )
|
|
{
|
|
assert( seq->first->start_index == 0 );
|
|
seq->first = block;
|
|
}
|
|
else
|
|
{
|
|
seq->block_max = seq->ptr = block->data;
|
|
}
|
|
|
|
block->start_index = 0;
|
|
|
|
for( ;; )
|
|
{
|
|
block->start_index += delta;
|
|
block = block->next;
|
|
if( block == seq->first )
|
|
break;
|
|
}
|
|
}
|
|
|
|
block->count = 0;
|
|
}
|
|
|
|
/* Recycle a sequence block: */
|
|
static void
|
|
icvFreeSeqBlock( CvSeq *seq, int in_front_of )
|
|
{
|
|
CvSeqBlock *block = seq->first;
|
|
|
|
assert( (in_front_of ? block : block->prev)->count == 0 );
|
|
|
|
if( block == block->prev ) /* single block case */
|
|
{
|
|
block->count = (int)(seq->block_max - block->data) + block->start_index * seq->elem_size;
|
|
block->data = seq->block_max - block->count;
|
|
seq->first = 0;
|
|
seq->ptr = seq->block_max = 0;
|
|
seq->total = 0;
|
|
}
|
|
else
|
|
{
|
|
if( !in_front_of )
|
|
{
|
|
block = block->prev;
|
|
assert( seq->ptr == block->data );
|
|
|
|
block->count = (int)(seq->block_max - seq->ptr);
|
|
seq->block_max = seq->ptr = block->prev->data +
|
|
block->prev->count * seq->elem_size;
|
|
}
|
|
else
|
|
{
|
|
int delta = block->start_index;
|
|
|
|
block->count = delta * seq->elem_size;
|
|
block->data -= block->count;
|
|
|
|
/* Update start indices of sequence blocks: */
|
|
for( ;; )
|
|
{
|
|
block->start_index -= delta;
|
|
block = block->next;
|
|
if( block == seq->first )
|
|
break;
|
|
}
|
|
|
|
seq->first = block->next;
|
|
}
|
|
|
|
block->prev->next = block->next;
|
|
block->next->prev = block->prev;
|
|
}
|
|
|
|
assert( block->count > 0 && block->count % seq->elem_size == 0 );
|
|
block->next = seq->free_blocks;
|
|
seq->free_blocks = block;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Sequence Writer implementation *
|
|
\****************************************************************************************/
|
|
|
|
/* Initialize sequence writer: */
|
|
CV_IMPL void
|
|
cvStartAppendToSeq( CvSeq *seq, CvSeqWriter * writer )
|
|
{
|
|
if( !seq || !writer )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
memset( writer, 0, sizeof( *writer ));
|
|
writer->header_size = sizeof( CvSeqWriter );
|
|
|
|
writer->seq = seq;
|
|
writer->block = seq->first ? seq->first->prev : 0;
|
|
writer->ptr = seq->ptr;
|
|
writer->block_max = seq->block_max;
|
|
}
|
|
|
|
|
|
/* Initialize sequence writer: */
|
|
CV_IMPL void
|
|
cvStartWriteSeq( int seq_flags, int header_size,
|
|
int elem_size, CvMemStorage * storage, CvSeqWriter * writer )
|
|
{
|
|
if( !storage || !writer )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
CvSeq* seq = cvCreateSeq( seq_flags, header_size, elem_size, storage );
|
|
cvStartAppendToSeq( seq, writer );
|
|
}
|
|
|
|
|
|
/* Update sequence header: */
|
|
CV_IMPL void
|
|
cvFlushSeqWriter( CvSeqWriter * writer )
|
|
{
|
|
if( !writer )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
CvSeq* seq = writer->seq;
|
|
seq->ptr = writer->ptr;
|
|
|
|
if( writer->block )
|
|
{
|
|
int total = 0;
|
|
CvSeqBlock *first_block = writer->seq->first;
|
|
CvSeqBlock *block = first_block;
|
|
|
|
writer->block->count = (int)((writer->ptr - writer->block->data) / seq->elem_size);
|
|
assert( writer->block->count > 0 );
|
|
|
|
do
|
|
{
|
|
total += block->count;
|
|
block = block->next;
|
|
}
|
|
while( block != first_block );
|
|
|
|
writer->seq->total = total;
|
|
}
|
|
}
|
|
|
|
|
|
/* Calls icvFlushSeqWriter and finishes writing process: */
|
|
CV_IMPL CvSeq *
|
|
cvEndWriteSeq( CvSeqWriter * writer )
|
|
{
|
|
if( !writer )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
cvFlushSeqWriter( writer );
|
|
CvSeq* seq = writer->seq;
|
|
|
|
/* Truncate the last block: */
|
|
if( writer->block && writer->seq->storage )
|
|
{
|
|
CvMemStorage *storage = seq->storage;
|
|
schar *storage_block_max = (schar *) storage->top + storage->block_size;
|
|
|
|
assert( writer->block->count > 0 );
|
|
|
|
if( (unsigned)((storage_block_max - storage->free_space)
|
|
- seq->block_max) < CV_STRUCT_ALIGN )
|
|
{
|
|
storage->free_space = cvAlignLeft((int)(storage_block_max - seq->ptr), CV_STRUCT_ALIGN);
|
|
seq->block_max = seq->ptr;
|
|
}
|
|
}
|
|
|
|
writer->ptr = 0;
|
|
return seq;
|
|
}
|
|
|
|
|
|
/* Create new sequence block: */
|
|
CV_IMPL void
|
|
cvCreateSeqBlock( CvSeqWriter * writer )
|
|
{
|
|
if( !writer || !writer->seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
CvSeq* seq = writer->seq;
|
|
|
|
cvFlushSeqWriter( writer );
|
|
|
|
icvGrowSeq( seq, 0 );
|
|
|
|
writer->block = seq->first->prev;
|
|
writer->ptr = seq->ptr;
|
|
writer->block_max = seq->block_max;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Sequence Reader implementation *
|
|
\****************************************************************************************/
|
|
|
|
/* Initialize sequence reader: */
|
|
CV_IMPL void
|
|
cvStartReadSeq( const CvSeq *seq, CvSeqReader * reader, int reverse )
|
|
{
|
|
CvSeqBlock *first_block;
|
|
CvSeqBlock *last_block;
|
|
|
|
if( reader )
|
|
{
|
|
reader->seq = 0;
|
|
reader->block = 0;
|
|
reader->ptr = reader->block_max = reader->block_min = 0;
|
|
}
|
|
|
|
if( !seq || !reader )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
reader->header_size = sizeof( CvSeqReader );
|
|
reader->seq = (CvSeq*)seq;
|
|
|
|
first_block = seq->first;
|
|
|
|
if( first_block )
|
|
{
|
|
last_block = first_block->prev;
|
|
reader->ptr = first_block->data;
|
|
reader->prev_elem = CV_GET_LAST_ELEM( seq, last_block );
|
|
reader->delta_index = seq->first->start_index;
|
|
|
|
if( reverse )
|
|
{
|
|
schar *temp = reader->ptr;
|
|
|
|
reader->ptr = reader->prev_elem;
|
|
reader->prev_elem = temp;
|
|
|
|
reader->block = last_block;
|
|
}
|
|
else
|
|
{
|
|
reader->block = first_block;
|
|
}
|
|
|
|
reader->block_min = reader->block->data;
|
|
reader->block_max = reader->block_min + reader->block->count * seq->elem_size;
|
|
}
|
|
else
|
|
{
|
|
reader->delta_index = 0;
|
|
reader->block = 0;
|
|
|
|
reader->ptr = reader->prev_elem = reader->block_min = reader->block_max = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Change the current reading block
|
|
* to the previous or to the next:
|
|
*/
|
|
CV_IMPL void
|
|
cvChangeSeqBlock( void* _reader, int direction )
|
|
{
|
|
CvSeqReader* reader = (CvSeqReader*)_reader;
|
|
|
|
if( !reader )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( direction > 0 )
|
|
{
|
|
reader->block = reader->block->next;
|
|
reader->ptr = reader->block->data;
|
|
}
|
|
else
|
|
{
|
|
reader->block = reader->block->prev;
|
|
reader->ptr = CV_GET_LAST_ELEM( reader->seq, reader->block );
|
|
}
|
|
reader->block_min = reader->block->data;
|
|
reader->block_max = reader->block_min + reader->block->count * reader->seq->elem_size;
|
|
}
|
|
|
|
|
|
/* Return the current reader position: */
|
|
CV_IMPL int
|
|
cvGetSeqReaderPos( CvSeqReader* reader )
|
|
{
|
|
int elem_size;
|
|
int index = -1;
|
|
|
|
if( !reader || !reader->ptr )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
elem_size = reader->seq->elem_size;
|
|
if( elem_size <= ICV_SHIFT_TAB_MAX && (index = icvPower2ShiftTab[elem_size - 1]) >= 0 )
|
|
index = (int)((reader->ptr - reader->block_min) >> index);
|
|
else
|
|
index = (int)((reader->ptr - reader->block_min) / elem_size);
|
|
|
|
index += reader->block->start_index - reader->delta_index;
|
|
|
|
return index;
|
|
}
|
|
|
|
|
|
/* Set reader position to given position,
|
|
* either absolute or relative to the
|
|
* current one:
|
|
*/
|
|
CV_IMPL void
|
|
cvSetSeqReaderPos( CvSeqReader* reader, int index, int is_relative )
|
|
{
|
|
CvSeqBlock *block;
|
|
int elem_size, count, total;
|
|
|
|
if( !reader || !reader->seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
total = reader->seq->total;
|
|
elem_size = reader->seq->elem_size;
|
|
|
|
if( !is_relative )
|
|
{
|
|
if( index < 0 )
|
|
{
|
|
if( index < -total )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
index += total;
|
|
}
|
|
else if( index >= total )
|
|
{
|
|
index -= total;
|
|
if( index >= total )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
}
|
|
|
|
block = reader->seq->first;
|
|
if( index >= (count = block->count) )
|
|
{
|
|
if( index + index <= total )
|
|
{
|
|
do
|
|
{
|
|
block = block->next;
|
|
index -= count;
|
|
}
|
|
while( index >= (count = block->count) );
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
block = block->prev;
|
|
total -= block->count;
|
|
}
|
|
while( index < total );
|
|
index -= total;
|
|
}
|
|
}
|
|
reader->ptr = block->data + index * elem_size;
|
|
if( reader->block != block )
|
|
{
|
|
reader->block = block;
|
|
reader->block_min = block->data;
|
|
reader->block_max = block->data + block->count * elem_size;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
schar* ptr = reader->ptr;
|
|
index *= elem_size;
|
|
block = reader->block;
|
|
|
|
if( index > 0 )
|
|
{
|
|
while( ptr + index >= reader->block_max )
|
|
{
|
|
int delta = (int)(reader->block_max - ptr);
|
|
index -= delta;
|
|
reader->block = block = block->next;
|
|
reader->block_min = ptr = block->data;
|
|
reader->block_max = block->data + block->count*elem_size;
|
|
}
|
|
reader->ptr = ptr + index;
|
|
}
|
|
else
|
|
{
|
|
while( ptr + index < reader->block_min )
|
|
{
|
|
int delta = (int)(ptr - reader->block_min);
|
|
index += delta;
|
|
reader->block = block = block->prev;
|
|
reader->block_min = block->data;
|
|
reader->block_max = ptr = block->data + block->count*elem_size;
|
|
}
|
|
reader->ptr = ptr + index;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Push element onto the sequence: */
|
|
CV_IMPL schar*
|
|
cvSeqPush( CvSeq *seq, const void *element )
|
|
{
|
|
schar *ptr = 0;
|
|
size_t elem_size;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
ptr = seq->ptr;
|
|
|
|
if( ptr >= seq->block_max )
|
|
{
|
|
icvGrowSeq( seq, 0 );
|
|
|
|
ptr = seq->ptr;
|
|
assert( ptr + elem_size <= seq->block_max /*&& ptr == seq->block_min */ );
|
|
}
|
|
|
|
if( element )
|
|
memcpy( ptr, element, elem_size );
|
|
seq->first->prev->count++;
|
|
seq->total++;
|
|
seq->ptr = ptr + elem_size;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
/* Pop last element off of the sequence: */
|
|
CV_IMPL void
|
|
cvSeqPop( CvSeq *seq, void *element )
|
|
{
|
|
schar *ptr;
|
|
int elem_size;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( seq->total <= 0 )
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
seq->ptr = ptr = seq->ptr - elem_size;
|
|
|
|
if( element )
|
|
memcpy( element, ptr, elem_size );
|
|
seq->ptr = ptr;
|
|
seq->total--;
|
|
|
|
if( --(seq->first->prev->count) == 0 )
|
|
{
|
|
icvFreeSeqBlock( seq, 0 );
|
|
assert( seq->ptr == seq->block_max );
|
|
}
|
|
}
|
|
|
|
|
|
/* Push element onto the front of the sequence: */
|
|
CV_IMPL schar*
|
|
cvSeqPushFront( CvSeq *seq, const void *element )
|
|
{
|
|
schar* ptr = 0;
|
|
int elem_size;
|
|
CvSeqBlock *block;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
block = seq->first;
|
|
|
|
if( !block || block->start_index == 0 )
|
|
{
|
|
icvGrowSeq( seq, 1 );
|
|
|
|
block = seq->first;
|
|
assert( block->start_index > 0 );
|
|
}
|
|
|
|
ptr = block->data -= elem_size;
|
|
|
|
if( element )
|
|
memcpy( ptr, element, elem_size );
|
|
block->count++;
|
|
block->start_index--;
|
|
seq->total++;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
/* Shift out first element of the sequence: */
|
|
CV_IMPL void
|
|
cvSeqPopFront( CvSeq *seq, void *element )
|
|
{
|
|
int elem_size;
|
|
CvSeqBlock *block;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( seq->total <= 0 )
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
block = seq->first;
|
|
|
|
if( element )
|
|
memcpy( element, block->data, elem_size );
|
|
block->data += elem_size;
|
|
block->start_index++;
|
|
seq->total--;
|
|
|
|
if( --(block->count) == 0 )
|
|
icvFreeSeqBlock( seq, 1 );
|
|
}
|
|
|
|
/* Insert new element in middle of sequence: */
|
|
CV_IMPL schar*
|
|
cvSeqInsert( CvSeq *seq, int before_index, const void *element )
|
|
{
|
|
int elem_size;
|
|
int block_size;
|
|
CvSeqBlock *block;
|
|
int delta_index;
|
|
int total;
|
|
schar* ret_ptr = 0;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
total = seq->total;
|
|
before_index += before_index < 0 ? total : 0;
|
|
before_index -= before_index > total ? total : 0;
|
|
|
|
if( (unsigned)before_index > (unsigned)total )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
if( before_index == total )
|
|
{
|
|
ret_ptr = cvSeqPush( seq, element );
|
|
}
|
|
else if( before_index == 0 )
|
|
{
|
|
ret_ptr = cvSeqPushFront( seq, element );
|
|
}
|
|
else
|
|
{
|
|
elem_size = seq->elem_size;
|
|
|
|
if( before_index >= total >> 1 )
|
|
{
|
|
schar *ptr = seq->ptr + elem_size;
|
|
|
|
if( ptr > seq->block_max )
|
|
{
|
|
icvGrowSeq( seq, 0 );
|
|
|
|
ptr = seq->ptr + elem_size;
|
|
assert( ptr <= seq->block_max );
|
|
}
|
|
|
|
delta_index = seq->first->start_index;
|
|
block = seq->first->prev;
|
|
block->count++;
|
|
block_size = (int)(ptr - block->data);
|
|
|
|
while( before_index < block->start_index - delta_index )
|
|
{
|
|
CvSeqBlock *prev_block = block->prev;
|
|
|
|
memmove( block->data + elem_size, block->data, block_size - elem_size );
|
|
block_size = prev_block->count * elem_size;
|
|
memcpy( block->data, prev_block->data + block_size - elem_size, elem_size );
|
|
block = prev_block;
|
|
|
|
/* Check that we don't fall into an infinite loop: */
|
|
assert( block != seq->first->prev );
|
|
}
|
|
|
|
before_index = (before_index - block->start_index + delta_index) * elem_size;
|
|
memmove( block->data + before_index + elem_size, block->data + before_index,
|
|
block_size - before_index - elem_size );
|
|
|
|
ret_ptr = block->data + before_index;
|
|
|
|
if( element )
|
|
memcpy( ret_ptr, element, elem_size );
|
|
seq->ptr = ptr;
|
|
}
|
|
else
|
|
{
|
|
block = seq->first;
|
|
|
|
if( block->start_index == 0 )
|
|
{
|
|
icvGrowSeq( seq, 1 );
|
|
|
|
block = seq->first;
|
|
}
|
|
|
|
delta_index = block->start_index;
|
|
block->count++;
|
|
block->start_index--;
|
|
block->data -= elem_size;
|
|
|
|
while( before_index > block->start_index - delta_index + block->count )
|
|
{
|
|
CvSeqBlock *next_block = block->next;
|
|
|
|
block_size = block->count * elem_size;
|
|
memmove( block->data, block->data + elem_size, block_size - elem_size );
|
|
memcpy( block->data + block_size - elem_size, next_block->data, elem_size );
|
|
block = next_block;
|
|
|
|
/* Check that we don't fall into an infinite loop: */
|
|
assert( block != seq->first );
|
|
}
|
|
|
|
before_index = (before_index - block->start_index + delta_index) * elem_size;
|
|
memmove( block->data, block->data + elem_size, before_index - elem_size );
|
|
|
|
ret_ptr = block->data + before_index - elem_size;
|
|
|
|
if( element )
|
|
memcpy( ret_ptr, element, elem_size );
|
|
}
|
|
|
|
seq->total = total + 1;
|
|
}
|
|
|
|
return ret_ptr;
|
|
}
|
|
|
|
|
|
/* Removes element from sequence: */
|
|
CV_IMPL void
|
|
cvSeqRemove( CvSeq *seq, int index )
|
|
{
|
|
schar *ptr;
|
|
int elem_size;
|
|
int block_size;
|
|
CvSeqBlock *block;
|
|
int delta_index;
|
|
int total, front = 0;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
total = seq->total;
|
|
|
|
index += index < 0 ? total : 0;
|
|
index -= index >= total ? total : 0;
|
|
|
|
if( (unsigned) index >= (unsigned) total )
|
|
CV_Error( CV_StsOutOfRange, "Invalid index" );
|
|
|
|
if( index == total - 1 )
|
|
{
|
|
cvSeqPop( seq, 0 );
|
|
}
|
|
else if( index == 0 )
|
|
{
|
|
cvSeqPopFront( seq, 0 );
|
|
}
|
|
else
|
|
{
|
|
block = seq->first;
|
|
elem_size = seq->elem_size;
|
|
delta_index = block->start_index;
|
|
while( block->start_index - delta_index + block->count <= index )
|
|
block = block->next;
|
|
|
|
ptr = block->data + (index - block->start_index + delta_index) * elem_size;
|
|
|
|
front = index < total >> 1;
|
|
if( !front )
|
|
{
|
|
block_size = block->count * elem_size - (int)(ptr - block->data);
|
|
|
|
while( block != seq->first->prev ) /* while not the last block */
|
|
{
|
|
CvSeqBlock *next_block = block->next;
|
|
|
|
memmove( ptr, ptr + elem_size, block_size - elem_size );
|
|
memcpy( ptr + block_size - elem_size, next_block->data, elem_size );
|
|
block = next_block;
|
|
ptr = block->data;
|
|
block_size = block->count * elem_size;
|
|
}
|
|
|
|
memmove( ptr, ptr + elem_size, block_size - elem_size );
|
|
seq->ptr -= elem_size;
|
|
}
|
|
else
|
|
{
|
|
ptr += elem_size;
|
|
block_size = (int)(ptr - block->data);
|
|
|
|
while( block != seq->first )
|
|
{
|
|
CvSeqBlock *prev_block = block->prev;
|
|
|
|
memmove( block->data + elem_size, block->data, block_size - elem_size );
|
|
block_size = prev_block->count * elem_size;
|
|
memcpy( block->data, prev_block->data + block_size - elem_size, elem_size );
|
|
block = prev_block;
|
|
}
|
|
|
|
memmove( block->data + elem_size, block->data, block_size - elem_size );
|
|
block->data += elem_size;
|
|
block->start_index++;
|
|
}
|
|
|
|
seq->total = total - 1;
|
|
if( --block->count == 0 )
|
|
icvFreeSeqBlock( seq, front );
|
|
}
|
|
}
|
|
|
|
|
|
/* Add several elements to the beginning or end of a sequence: */
|
|
CV_IMPL void
|
|
cvSeqPushMulti( CvSeq *seq, const void *_elements, int count, int front )
|
|
{
|
|
char *elements = (char *) _elements;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "NULL sequence pointer" );
|
|
if( count < 0 )
|
|
CV_Error( CV_StsBadSize, "number of removed elements is negative" );
|
|
|
|
int elem_size = seq->elem_size;
|
|
|
|
if( !front )
|
|
{
|
|
while( count > 0 )
|
|
{
|
|
int delta = (int)((seq->block_max - seq->ptr) / elem_size);
|
|
|
|
delta = MIN( delta, count );
|
|
if( delta > 0 )
|
|
{
|
|
seq->first->prev->count += delta;
|
|
seq->total += delta;
|
|
count -= delta;
|
|
delta *= elem_size;
|
|
if( elements )
|
|
{
|
|
memcpy( seq->ptr, elements, delta );
|
|
elements += delta;
|
|
}
|
|
seq->ptr += delta;
|
|
}
|
|
|
|
if( count > 0 )
|
|
icvGrowSeq( seq, 0 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CvSeqBlock* block = seq->first;
|
|
|
|
while( count > 0 )
|
|
{
|
|
int delta;
|
|
|
|
if( !block || block->start_index == 0 )
|
|
{
|
|
icvGrowSeq( seq, 1 );
|
|
|
|
block = seq->first;
|
|
assert( block->start_index > 0 );
|
|
}
|
|
|
|
delta = MIN( block->start_index, count );
|
|
count -= delta;
|
|
block->start_index -= delta;
|
|
block->count += delta;
|
|
seq->total += delta;
|
|
delta *= elem_size;
|
|
block->data -= delta;
|
|
|
|
if( elements )
|
|
memcpy( block->data, elements + count*elem_size, delta );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Remove several elements from the end of sequence: */
|
|
CV_IMPL void
|
|
cvSeqPopMulti( CvSeq *seq, void *_elements, int count, int front )
|
|
{
|
|
char *elements = (char *) _elements;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "NULL sequence pointer" );
|
|
if( count < 0 )
|
|
CV_Error( CV_StsBadSize, "number of removed elements is negative" );
|
|
|
|
count = MIN( count, seq->total );
|
|
|
|
if( !front )
|
|
{
|
|
if( elements )
|
|
elements += count * seq->elem_size;
|
|
|
|
while( count > 0 )
|
|
{
|
|
int delta = seq->first->prev->count;
|
|
|
|
delta = MIN( delta, count );
|
|
assert( delta > 0 );
|
|
|
|
seq->first->prev->count -= delta;
|
|
seq->total -= delta;
|
|
count -= delta;
|
|
delta *= seq->elem_size;
|
|
seq->ptr -= delta;
|
|
|
|
if( elements )
|
|
{
|
|
elements -= delta;
|
|
memcpy( elements, seq->ptr, delta );
|
|
}
|
|
|
|
if( seq->first->prev->count == 0 )
|
|
icvFreeSeqBlock( seq, 0 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while( count > 0 )
|
|
{
|
|
int delta = seq->first->count;
|
|
|
|
delta = MIN( delta, count );
|
|
assert( delta > 0 );
|
|
|
|
seq->first->count -= delta;
|
|
seq->total -= delta;
|
|
count -= delta;
|
|
seq->first->start_index += delta;
|
|
delta *= seq->elem_size;
|
|
|
|
if( elements )
|
|
{
|
|
memcpy( elements, seq->first->data, delta );
|
|
elements += delta;
|
|
}
|
|
|
|
seq->first->data += delta;
|
|
if( seq->first->count == 0 )
|
|
icvFreeSeqBlock( seq, 1 );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Remove all elements from a sequence: */
|
|
CV_IMPL void
|
|
cvClearSeq( CvSeq *seq )
|
|
{
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
cvSeqPopMulti( seq, 0, seq->total );
|
|
}
|
|
|
|
|
|
CV_IMPL CvSeq*
|
|
cvSeqSlice( const CvSeq* seq, CvSlice slice, CvMemStorage* storage, int copy_data )
|
|
{
|
|
CvSeq* subseq = 0;
|
|
int elem_size, count, length;
|
|
CvSeqReader reader;
|
|
CvSeqBlock *block, *first_block = 0, *last_block = 0;
|
|
|
|
if( !CV_IS_SEQ(seq) )
|
|
CV_Error( CV_StsBadArg, "Invalid sequence header" );
|
|
|
|
if( !storage )
|
|
{
|
|
storage = seq->storage;
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
|
}
|
|
|
|
elem_size = seq->elem_size;
|
|
length = cvSliceLength( slice, seq );
|
|
if( slice.start_index < 0 )
|
|
slice.start_index += seq->total;
|
|
else if( slice.start_index >= seq->total )
|
|
slice.start_index -= seq->total;
|
|
if( (unsigned)length > (unsigned)seq->total ||
|
|
((unsigned)slice.start_index >= (unsigned)seq->total && length != 0) )
|
|
CV_Error( CV_StsOutOfRange, "Bad sequence slice" );
|
|
|
|
subseq = cvCreateSeq( seq->flags, seq->header_size, elem_size, storage );
|
|
|
|
if( length > 0 )
|
|
{
|
|
cvStartReadSeq( seq, &reader, 0 );
|
|
cvSetSeqReaderPos( &reader, slice.start_index, 0 );
|
|
count = (int)((reader.block_max - reader.ptr)/elem_size);
|
|
|
|
do
|
|
{
|
|
int bl = MIN( count, length );
|
|
|
|
if( !copy_data )
|
|
{
|
|
block = (CvSeqBlock*)cvMemStorageAlloc( storage, sizeof(*block) );
|
|
if( !first_block )
|
|
{
|
|
first_block = subseq->first = block->prev = block->next = block;
|
|
block->start_index = 0;
|
|
}
|
|
else
|
|
{
|
|
block->prev = last_block;
|
|
block->next = first_block;
|
|
last_block->next = first_block->prev = block;
|
|
block->start_index = last_block->start_index + last_block->count;
|
|
}
|
|
last_block = block;
|
|
block->data = reader.ptr;
|
|
block->count = bl;
|
|
subseq->total += bl;
|
|
}
|
|
else
|
|
cvSeqPushMulti( subseq, reader.ptr, bl, 0 );
|
|
length -= bl;
|
|
reader.block = reader.block->next;
|
|
reader.ptr = reader.block->data;
|
|
count = reader.block->count;
|
|
}
|
|
while( length > 0 );
|
|
}
|
|
|
|
return subseq;
|
|
}
|
|
|
|
|
|
// Remove slice from the middle of the sequence.
|
|
// !!! TODO !!! Implement more efficient algorithm
|
|
CV_IMPL void
|
|
cvSeqRemoveSlice( CvSeq* seq, CvSlice slice )
|
|
{
|
|
int total, length;
|
|
|
|
if( !CV_IS_SEQ(seq) )
|
|
CV_Error( CV_StsBadArg, "Invalid sequence header" );
|
|
|
|
length = cvSliceLength( slice, seq );
|
|
total = seq->total;
|
|
|
|
if( slice.start_index < 0 )
|
|
slice.start_index += total;
|
|
else if( slice.start_index >= total )
|
|
slice.start_index -= total;
|
|
|
|
if( (unsigned)slice.start_index >= (unsigned)total )
|
|
CV_Error( CV_StsOutOfRange, "start slice index is out of range" );
|
|
|
|
slice.end_index = slice.start_index + length;
|
|
|
|
if( slice.end_index < total )
|
|
{
|
|
CvSeqReader reader_to, reader_from;
|
|
int elem_size = seq->elem_size;
|
|
|
|
cvStartReadSeq( seq, &reader_to );
|
|
cvStartReadSeq( seq, &reader_from );
|
|
|
|
if( slice.start_index > total - slice.end_index )
|
|
{
|
|
int i, count = seq->total - slice.end_index;
|
|
cvSetSeqReaderPos( &reader_to, slice.start_index );
|
|
cvSetSeqReaderPos( &reader_from, slice.end_index );
|
|
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader_to );
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader_from );
|
|
}
|
|
|
|
cvSeqPopMulti( seq, 0, slice.end_index - slice.start_index );
|
|
}
|
|
else
|
|
{
|
|
int i, count = slice.start_index;
|
|
cvSetSeqReaderPos( &reader_to, slice.end_index );
|
|
cvSetSeqReaderPos( &reader_from, slice.start_index );
|
|
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
CV_PREV_SEQ_ELEM( elem_size, reader_to );
|
|
CV_PREV_SEQ_ELEM( elem_size, reader_from );
|
|
|
|
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
|
|
}
|
|
|
|
cvSeqPopMulti( seq, 0, slice.end_index - slice.start_index, 1 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cvSeqPopMulti( seq, 0, total - slice.start_index );
|
|
cvSeqPopMulti( seq, 0, slice.end_index - total, 1 );
|
|
}
|
|
}
|
|
|
|
|
|
// Insert a sequence into the middle of another sequence:
|
|
// !!! TODO !!! Implement more efficient algorithm
|
|
CV_IMPL void
|
|
cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
|
|
{
|
|
CvSeqReader reader_to, reader_from;
|
|
int i, elem_size, total, from_total;
|
|
CvSeq from_header, *from = (CvSeq*)from_arr;
|
|
CvSeqBlock block;
|
|
|
|
if( !CV_IS_SEQ(seq) )
|
|
CV_Error( CV_StsBadArg, "Invalid destination sequence header" );
|
|
|
|
if( !CV_IS_SEQ(from))
|
|
{
|
|
CvMat* mat = (CvMat*)from;
|
|
if( !CV_IS_MAT(mat))
|
|
CV_Error( CV_StsBadArg, "Source is not a sequence nor matrix" );
|
|
|
|
if( !CV_IS_MAT_CONT(mat->type) || (mat->rows != 1 && mat->cols != 1) )
|
|
CV_Error( CV_StsBadArg, "The source array must be 1d coninuous vector" );
|
|
|
|
from = cvMakeSeqHeaderForArray( CV_SEQ_KIND_GENERIC, sizeof(from_header),
|
|
CV_ELEM_SIZE(mat->type),
|
|
mat->data.ptr, mat->cols + mat->rows - 1,
|
|
&from_header, &block );
|
|
}
|
|
|
|
if( seq->elem_size != from->elem_size )
|
|
CV_Error( CV_StsUnmatchedSizes,
|
|
"Source and destination sequence element sizes are different." );
|
|
|
|
from_total = from->total;
|
|
|
|
if( from_total == 0 )
|
|
return;
|
|
|
|
total = seq->total;
|
|
index += index < 0 ? total : 0;
|
|
index -= index > total ? total : 0;
|
|
|
|
if( (unsigned)index > (unsigned)total )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
|
|
if( index < (total >> 1) )
|
|
{
|
|
cvSeqPushMulti( seq, 0, from_total, 1 );
|
|
|
|
cvStartReadSeq( seq, &reader_to );
|
|
cvStartReadSeq( seq, &reader_from );
|
|
cvSetSeqReaderPos( &reader_from, from_total );
|
|
|
|
for( i = 0; i < index; i++ )
|
|
{
|
|
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader_to );
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader_from );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cvSeqPushMulti( seq, 0, from_total );
|
|
|
|
cvStartReadSeq( seq, &reader_to );
|
|
cvStartReadSeq( seq, &reader_from );
|
|
cvSetSeqReaderPos( &reader_from, total );
|
|
cvSetSeqReaderPos( &reader_to, seq->total );
|
|
|
|
for( i = 0; i < total - index; i++ )
|
|
{
|
|
CV_PREV_SEQ_ELEM( elem_size, reader_to );
|
|
CV_PREV_SEQ_ELEM( elem_size, reader_from );
|
|
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
|
|
}
|
|
}
|
|
|
|
cvStartReadSeq( from, &reader_from );
|
|
cvSetSeqReaderPos( &reader_to, index );
|
|
|
|
for( i = 0; i < from_total; i++ )
|
|
{
|
|
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader_to );
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader_from );
|
|
}
|
|
}
|
|
|
|
// Sort the sequence using user-specified comparison function.
|
|
// The semantics is similar to qsort() function.
|
|
// The code is based on BSD system qsort():
|
|
// * Copyright (c) 1992, 1993
|
|
// * The Regents of the University of California. All rights reserved.
|
|
// *
|
|
// * Redistribution and use in source and binary forms, with or without
|
|
// * modification, are permitted provided that the following conditions
|
|
// * are met:
|
|
// * 1. Redistributions of source code must retain the above copyright
|
|
// * notice, this list of conditions and the following disclaimer.
|
|
// * 2. Redistributions in binary form must reproduce the above copyright
|
|
// * notice, this list of conditions and the following disclaimer in the
|
|
// * documentation and/or other materials provided with the distribution.
|
|
// * 3. All advertising materials mentioning features or use of this software
|
|
// * must display the following acknowledgement:
|
|
// * This product includes software developed by the University of
|
|
// * California, Berkeley and its contributors.
|
|
// * 4. Neither the name of the University nor the names of its contributors
|
|
// * may be used to endorse or promote products derived from this software
|
|
// * without specific prior written permission.
|
|
// *
|
|
// * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
// * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
// * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
// * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
// * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
// * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
// * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
// * SUCH DAMAGE.
|
|
|
|
typedef struct CvSeqReaderPos
|
|
{
|
|
CvSeqBlock* block;
|
|
schar* ptr;
|
|
schar* block_min;
|
|
schar* block_max;
|
|
}
|
|
CvSeqReaderPos;
|
|
|
|
#define CV_SAVE_READER_POS( reader, pos ) \
|
|
{ \
|
|
(pos).block = (reader).block; \
|
|
(pos).ptr = (reader).ptr; \
|
|
(pos).block_min = (reader).block_min; \
|
|
(pos).block_max = (reader).block_max; \
|
|
}
|
|
|
|
#define CV_RESTORE_READER_POS( reader, pos )\
|
|
{ \
|
|
(reader).block = (pos).block; \
|
|
(reader).ptr = (pos).ptr; \
|
|
(reader).block_min = (pos).block_min; \
|
|
(reader).block_max = (pos).block_max; \
|
|
}
|
|
|
|
inline schar*
|
|
icvMed3( schar* a, schar* b, schar* c, CvCmpFunc cmp_func, void* aux )
|
|
{
|
|
return cmp_func(a, b, aux) < 0 ?
|
|
(cmp_func(b, c, aux) < 0 ? b : cmp_func(a, c, aux) < 0 ? c : a)
|
|
:(cmp_func(b, c, aux) > 0 ? b : cmp_func(a, c, aux) < 0 ? a : c);
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvSeqSort( CvSeq* seq, CvCmpFunc cmp_func, void* aux )
|
|
{
|
|
int elem_size;
|
|
int isort_thresh = 7;
|
|
CvSeqReader left, right;
|
|
int sp = 0;
|
|
|
|
struct
|
|
{
|
|
CvSeqReaderPos lb;
|
|
CvSeqReaderPos ub;
|
|
}
|
|
stack[48];
|
|
|
|
if( !CV_IS_SEQ(seq) )
|
|
CV_Error( !seq ? CV_StsNullPtr : CV_StsBadArg, "Bad input sequence" );
|
|
|
|
if( !cmp_func )
|
|
CV_Error( CV_StsNullPtr, "Null compare function" );
|
|
|
|
if( seq->total <= 1 )
|
|
return;
|
|
|
|
elem_size = seq->elem_size;
|
|
isort_thresh *= elem_size;
|
|
|
|
cvStartReadSeq( seq, &left, 0 );
|
|
right = left;
|
|
CV_SAVE_READER_POS( left, stack[0].lb );
|
|
CV_PREV_SEQ_ELEM( elem_size, right );
|
|
CV_SAVE_READER_POS( right, stack[0].ub );
|
|
|
|
while( sp >= 0 )
|
|
{
|
|
CV_RESTORE_READER_POS( left, stack[sp].lb );
|
|
CV_RESTORE_READER_POS( right, stack[sp].ub );
|
|
sp--;
|
|
|
|
for(;;)
|
|
{
|
|
int i, n, m;
|
|
CvSeqReader ptr, ptr2;
|
|
|
|
if( left.block == right.block )
|
|
n = (int)(right.ptr - left.ptr) + elem_size;
|
|
else
|
|
{
|
|
n = cvGetSeqReaderPos( &right );
|
|
n = (n - cvGetSeqReaderPos( &left ) + 1)*elem_size;
|
|
}
|
|
|
|
if( n <= isort_thresh )
|
|
{
|
|
insert_sort:
|
|
ptr = ptr2 = left;
|
|
CV_NEXT_SEQ_ELEM( elem_size, ptr );
|
|
CV_NEXT_SEQ_ELEM( elem_size, right );
|
|
while( ptr.ptr != right.ptr )
|
|
{
|
|
ptr2.ptr = ptr.ptr;
|
|
if( ptr2.block != ptr.block )
|
|
{
|
|
ptr2.block = ptr.block;
|
|
ptr2.block_min = ptr.block_min;
|
|
ptr2.block_max = ptr.block_max;
|
|
}
|
|
while( ptr2.ptr != left.ptr )
|
|
{
|
|
schar* cur = ptr2.ptr;
|
|
CV_PREV_SEQ_ELEM( elem_size, ptr2 );
|
|
if( cmp_func( ptr2.ptr, cur, aux ) <= 0 )
|
|
break;
|
|
CV_SWAP_ELEMS( ptr2.ptr, cur, elem_size );
|
|
}
|
|
CV_NEXT_SEQ_ELEM( elem_size, ptr );
|
|
}
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
CvSeqReader left0, left1, right0, right1;
|
|
CvSeqReader tmp0, tmp1;
|
|
schar *m1, *m2, *m3, *pivot;
|
|
int swap_cnt = 0;
|
|
int l, l0, l1, r, r0, r1;
|
|
|
|
left0 = tmp0 = left;
|
|
right0 = right1 = right;
|
|
n /= elem_size;
|
|
|
|
if( n > 40 )
|
|
{
|
|
int d = n / 8;
|
|
schar *p1, *p2, *p3;
|
|
p1 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, d, 1 );
|
|
p2 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, d, 1 );
|
|
p3 = tmp0.ptr;
|
|
m1 = icvMed3( p1, p2, p3, cmp_func, aux );
|
|
cvSetSeqReaderPos( &tmp0, (n/2) - d*3, 1 );
|
|
p1 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, d, 1 );
|
|
p2 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, d, 1 );
|
|
p3 = tmp0.ptr;
|
|
m2 = icvMed3( p1, p2, p3, cmp_func, aux );
|
|
cvSetSeqReaderPos( &tmp0, n - 1 - d*3 - n/2, 1 );
|
|
p1 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, d, 1 );
|
|
p2 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, d, 1 );
|
|
p3 = tmp0.ptr;
|
|
m3 = icvMed3( p1, p2, p3, cmp_func, aux );
|
|
}
|
|
else
|
|
{
|
|
m1 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, n/2, 1 );
|
|
m2 = tmp0.ptr;
|
|
cvSetSeqReaderPos( &tmp0, n - 1 - n/2, 1 );
|
|
m3 = tmp0.ptr;
|
|
}
|
|
|
|
pivot = icvMed3( m1, m2, m3, cmp_func, aux );
|
|
left = left0;
|
|
if( pivot != left.ptr )
|
|
{
|
|
CV_SWAP_ELEMS( pivot, left.ptr, elem_size );
|
|
pivot = left.ptr;
|
|
}
|
|
CV_NEXT_SEQ_ELEM( elem_size, left );
|
|
left1 = left;
|
|
|
|
for(;;)
|
|
{
|
|
while( left.ptr != right.ptr && (r = cmp_func(left.ptr, pivot, aux)) <= 0 )
|
|
{
|
|
if( r == 0 )
|
|
{
|
|
if( left1.ptr != left.ptr )
|
|
CV_SWAP_ELEMS( left1.ptr, left.ptr, elem_size );
|
|
swap_cnt = 1;
|
|
CV_NEXT_SEQ_ELEM( elem_size, left1 );
|
|
}
|
|
CV_NEXT_SEQ_ELEM( elem_size, left );
|
|
}
|
|
|
|
while( left.ptr != right.ptr && (r = cmp_func(right.ptr,pivot, aux)) >= 0 )
|
|
{
|
|
if( r == 0 )
|
|
{
|
|
if( right1.ptr != right.ptr )
|
|
CV_SWAP_ELEMS( right1.ptr, right.ptr, elem_size );
|
|
swap_cnt = 1;
|
|
CV_PREV_SEQ_ELEM( elem_size, right1 );
|
|
}
|
|
CV_PREV_SEQ_ELEM( elem_size, right );
|
|
}
|
|
|
|
if( left.ptr == right.ptr )
|
|
{
|
|
r = cmp_func(left.ptr, pivot, aux);
|
|
if( r == 0 )
|
|
{
|
|
if( left1.ptr != left.ptr )
|
|
CV_SWAP_ELEMS( left1.ptr, left.ptr, elem_size );
|
|
swap_cnt = 1;
|
|
CV_NEXT_SEQ_ELEM( elem_size, left1 );
|
|
}
|
|
if( r <= 0 )
|
|
{
|
|
CV_NEXT_SEQ_ELEM( elem_size, left );
|
|
}
|
|
else
|
|
{
|
|
CV_PREV_SEQ_ELEM( elem_size, right );
|
|
}
|
|
break;
|
|
}
|
|
|
|
CV_SWAP_ELEMS( left.ptr, right.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, left );
|
|
r = left.ptr == right.ptr;
|
|
CV_PREV_SEQ_ELEM( elem_size, right );
|
|
swap_cnt = 1;
|
|
if( r )
|
|
break;
|
|
}
|
|
|
|
if( swap_cnt == 0 )
|
|
{
|
|
left = left0, right = right0;
|
|
goto insert_sort;
|
|
}
|
|
|
|
l = cvGetSeqReaderPos( &left );
|
|
if( l == 0 )
|
|
l = seq->total;
|
|
l0 = cvGetSeqReaderPos( &left0 );
|
|
l1 = cvGetSeqReaderPos( &left1 );
|
|
if( l1 == 0 )
|
|
l1 = seq->total;
|
|
|
|
n = MIN( l - l1, l1 - l0 );
|
|
if( n > 0 )
|
|
{
|
|
tmp0 = left0;
|
|
tmp1 = left;
|
|
cvSetSeqReaderPos( &tmp1, 0-n, 1 );
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
CV_SWAP_ELEMS( tmp0.ptr, tmp1.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, tmp0 );
|
|
CV_NEXT_SEQ_ELEM( elem_size, tmp1 );
|
|
}
|
|
}
|
|
|
|
r = cvGetSeqReaderPos( &right );
|
|
r0 = cvGetSeqReaderPos( &right0 );
|
|
r1 = cvGetSeqReaderPos( &right1 );
|
|
m = MIN( r0 - r1, r1 - r );
|
|
if( m > 0 )
|
|
{
|
|
tmp0 = left;
|
|
tmp1 = right0;
|
|
cvSetSeqReaderPos( &tmp1, 1-m, 1 );
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
CV_SWAP_ELEMS( tmp0.ptr, tmp1.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, tmp0 );
|
|
CV_NEXT_SEQ_ELEM( elem_size, tmp1 );
|
|
}
|
|
}
|
|
|
|
n = l - l1;
|
|
m = r1 - r;
|
|
if( n > 1 )
|
|
{
|
|
if( m > 1 )
|
|
{
|
|
if( n > m )
|
|
{
|
|
sp++;
|
|
CV_SAVE_READER_POS( left0, stack[sp].lb );
|
|
cvSetSeqReaderPos( &left0, n - 1, 1 );
|
|
CV_SAVE_READER_POS( left0, stack[sp].ub );
|
|
left = right = right0;
|
|
cvSetSeqReaderPos( &left, 1 - m, 1 );
|
|
}
|
|
else
|
|
{
|
|
sp++;
|
|
CV_SAVE_READER_POS( right0, stack[sp].ub );
|
|
cvSetSeqReaderPos( &right0, 1 - m, 1 );
|
|
CV_SAVE_READER_POS( right0, stack[sp].lb );
|
|
left = right = left0;
|
|
cvSetSeqReaderPos( &right, n - 1, 1 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
left = right = left0;
|
|
cvSetSeqReaderPos( &right, n - 1, 1 );
|
|
}
|
|
}
|
|
else if( m > 1 )
|
|
{
|
|
left = right = right0;
|
|
cvSetSeqReaderPos( &left, 1 - m, 1 );
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL schar*
|
|
cvSeqSearch( CvSeq* seq, const void* _elem, CvCmpFunc cmp_func,
|
|
int is_sorted, int* _idx, void* userdata )
|
|
{
|
|
schar* result = 0;
|
|
const schar* elem = (const schar*)_elem;
|
|
int idx = -1;
|
|
int i, j;
|
|
|
|
if( _idx )
|
|
*_idx = idx;
|
|
|
|
if( !CV_IS_SEQ(seq) )
|
|
CV_Error( !seq ? CV_StsNullPtr : CV_StsBadArg, "Bad input sequence" );
|
|
|
|
if( !elem )
|
|
CV_Error( CV_StsNullPtr, "Null element pointer" );
|
|
|
|
int elem_size = seq->elem_size;
|
|
int total = seq->total;
|
|
|
|
if( total == 0 )
|
|
return 0;
|
|
|
|
if( !is_sorted )
|
|
{
|
|
CvSeqReader reader;
|
|
cvStartReadSeq( seq, &reader, 0 );
|
|
|
|
if( cmp_func )
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
if( cmp_func( elem, reader.ptr, userdata ) == 0 )
|
|
break;
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader );
|
|
}
|
|
}
|
|
else if( (elem_size & (sizeof(int)-1)) == 0 )
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
for( j = 0; j < elem_size; j += sizeof(int) )
|
|
{
|
|
if( *(const int*)(reader.ptr + j) != *(const int*)(elem + j) )
|
|
break;
|
|
}
|
|
if( j == elem_size )
|
|
break;
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
for( j = 0; j < elem_size; j++ )
|
|
{
|
|
if( reader.ptr[j] != elem[j] )
|
|
break;
|
|
}
|
|
if( j == elem_size )
|
|
break;
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader );
|
|
}
|
|
}
|
|
|
|
idx = i;
|
|
if( i < total )
|
|
result = reader.ptr;
|
|
}
|
|
else
|
|
{
|
|
if( !cmp_func )
|
|
CV_Error( CV_StsNullPtr, "Null compare function" );
|
|
|
|
i = 0, j = total;
|
|
|
|
while( j > i )
|
|
{
|
|
int k = (i+j)>>1, code;
|
|
schar* ptr = cvGetSeqElem( seq, k );
|
|
code = cmp_func( elem, ptr, userdata );
|
|
if( !code )
|
|
{
|
|
result = ptr;
|
|
idx = k;
|
|
if( _idx )
|
|
*_idx = idx;
|
|
return result;
|
|
}
|
|
if( code < 0 )
|
|
j = k;
|
|
else
|
|
i = k+1;
|
|
}
|
|
idx = j;
|
|
}
|
|
|
|
if( _idx )
|
|
*_idx = idx;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvSeqInvert( CvSeq* seq )
|
|
{
|
|
CvSeqReader left_reader, right_reader;
|
|
int elem_size;
|
|
int i, count;
|
|
|
|
cvStartReadSeq( seq, &left_reader, 0 );
|
|
cvStartReadSeq( seq, &right_reader, 1 );
|
|
elem_size = seq->elem_size;
|
|
count = seq->total >> 1;
|
|
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
CV_SWAP_ELEMS( left_reader.ptr, right_reader.ptr, elem_size );
|
|
CV_NEXT_SEQ_ELEM( elem_size, left_reader );
|
|
CV_PREV_SEQ_ELEM( elem_size, right_reader );
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct CvPTreeNode
|
|
{
|
|
struct CvPTreeNode* parent;
|
|
schar* element;
|
|
int rank;
|
|
}
|
|
CvPTreeNode;
|
|
|
|
|
|
// This function splits the input sequence or set into one or more equivalence classes.
|
|
// is_equal(a,b,...) returns non-zero if the two sequence elements
|
|
// belong to the same class. The function returns sequence of integers -
|
|
// 0-based class indexes for each element.
|
|
//
|
|
// The algorithm is described in "Introduction to Algorithms"
|
|
// by Cormen, Leiserson and Rivest, chapter "Data structures for disjoint sets"
|
|
CV_IMPL int
|
|
cvSeqPartition( const CvSeq* seq, CvMemStorage* storage, CvSeq** labels,
|
|
CvCmpFunc is_equal, void* userdata )
|
|
{
|
|
CvSeq* result = 0;
|
|
CvMemStorage* temp_storage = 0;
|
|
int class_idx = 0;
|
|
|
|
CvSeqWriter writer;
|
|
CvSeqReader reader, reader0;
|
|
CvSeq* nodes;
|
|
int i, j;
|
|
int is_set;
|
|
|
|
if( !labels )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( !seq || !is_equal )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( !storage )
|
|
storage = seq->storage;
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
is_set = CV_IS_SET(seq);
|
|
|
|
temp_storage = cvCreateChildMemStorage( storage );
|
|
|
|
nodes = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPTreeNode), temp_storage );
|
|
|
|
cvStartReadSeq( seq, &reader );
|
|
memset( &writer, 0, sizeof(writer));
|
|
cvStartAppendToSeq( nodes, &writer );
|
|
|
|
// Initial O(N) pass. Make a forest of single-vertex trees.
|
|
for( i = 0; i < seq->total; i++ )
|
|
{
|
|
CvPTreeNode node = { 0, 0, 0 };
|
|
if( !is_set || CV_IS_SET_ELEM( reader.ptr ))
|
|
node.element = reader.ptr;
|
|
CV_WRITE_SEQ_ELEM( node, writer );
|
|
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
|
|
}
|
|
|
|
cvEndWriteSeq( &writer );
|
|
|
|
// Because in the next loop we will iterate
|
|
// through all the sequence nodes each time,
|
|
// we do not need to initialize reader every time:
|
|
cvStartReadSeq( nodes, &reader );
|
|
cvStartReadSeq( nodes, &reader0 );
|
|
|
|
// The main O(N^2) pass. Merge connected components.
|
|
for( i = 0; i < nodes->total; i++ )
|
|
{
|
|
CvPTreeNode* node = (CvPTreeNode*)(reader0.ptr);
|
|
CvPTreeNode* root = node;
|
|
CV_NEXT_SEQ_ELEM( nodes->elem_size, reader0 );
|
|
|
|
if( !node->element )
|
|
continue;
|
|
|
|
// find root
|
|
while( root->parent )
|
|
root = root->parent;
|
|
|
|
for( j = 0; j < nodes->total; j++ )
|
|
{
|
|
CvPTreeNode* node2 = (CvPTreeNode*)reader.ptr;
|
|
|
|
if( node2->element && node2 != node &&
|
|
is_equal( node->element, node2->element, userdata ))
|
|
{
|
|
CvPTreeNode* root2 = node2;
|
|
|
|
// unite both trees
|
|
while( root2->parent )
|
|
root2 = root2->parent;
|
|
|
|
if( root2 != root )
|
|
{
|
|
if( root->rank > root2->rank )
|
|
root2->parent = root;
|
|
else
|
|
{
|
|
root->parent = root2;
|
|
root2->rank += root->rank == root2->rank;
|
|
root = root2;
|
|
}
|
|
assert( root->parent == 0 );
|
|
|
|
// Compress path from node2 to the root:
|
|
while( node2->parent )
|
|
{
|
|
CvPTreeNode* temp = node2;
|
|
node2 = node2->parent;
|
|
temp->parent = root;
|
|
}
|
|
|
|
// Compress path from node to the root:
|
|
node2 = node;
|
|
while( node2->parent )
|
|
{
|
|
CvPTreeNode* temp = node2;
|
|
node2 = node2->parent;
|
|
temp->parent = root;
|
|
}
|
|
}
|
|
}
|
|
|
|
CV_NEXT_SEQ_ELEM( sizeof(*node), reader );
|
|
}
|
|
}
|
|
|
|
// Final O(N) pass (Enumerate classes)
|
|
// Reuse reader one more time
|
|
result = cvCreateSeq( 0, sizeof(CvSeq), sizeof(int), storage );
|
|
cvStartAppendToSeq( result, &writer );
|
|
|
|
for( i = 0; i < nodes->total; i++ )
|
|
{
|
|
CvPTreeNode* node = (CvPTreeNode*)reader.ptr;
|
|
int idx = -1;
|
|
|
|
if( node->element )
|
|
{
|
|
while( node->parent )
|
|
node = node->parent;
|
|
if( node->rank >= 0 )
|
|
node->rank = ~class_idx++;
|
|
idx = ~node->rank;
|
|
}
|
|
|
|
CV_NEXT_SEQ_ELEM( sizeof(*node), reader );
|
|
CV_WRITE_SEQ_ELEM( idx, writer );
|
|
}
|
|
|
|
cvEndWriteSeq( &writer );
|
|
|
|
if( labels )
|
|
*labels = result;
|
|
|
|
cvReleaseMemStorage( &temp_storage );
|
|
return class_idx;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Set implementation *
|
|
\****************************************************************************************/
|
|
|
|
/* Creates empty set: */
|
|
CV_IMPL CvSet*
|
|
cvCreateSet( int set_flags, int header_size, int elem_size, CvMemStorage * storage )
|
|
{
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( header_size < (int)sizeof( CvSet ) ||
|
|
elem_size < (int)sizeof(void*)*2 ||
|
|
(elem_size & (sizeof(void*)-1)) != 0 )
|
|
CV_Error( CV_StsBadSize, "" );
|
|
|
|
CvSet* set = (CvSet*) cvCreateSeq( set_flags, header_size, elem_size, storage );
|
|
set->flags = (set->flags & ~CV_MAGIC_MASK) | CV_SET_MAGIC_VAL;
|
|
|
|
return set;
|
|
}
|
|
|
|
|
|
/* Add new element to the set: */
|
|
CV_IMPL int
|
|
cvSetAdd( CvSet* set, CvSetElem* element, CvSetElem** inserted_element )
|
|
{
|
|
int id = -1;
|
|
CvSetElem *free_elem;
|
|
|
|
if( !set )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( !(set->free_elems) )
|
|
{
|
|
int count = set->total;
|
|
int elem_size = set->elem_size;
|
|
schar *ptr;
|
|
icvGrowSeq( (CvSeq *) set, 0 );
|
|
|
|
set->free_elems = (CvSetElem*) (ptr = set->ptr);
|
|
for( ; ptr + elem_size <= set->block_max; ptr += elem_size, count++ )
|
|
{
|
|
((CvSetElem*)ptr)->flags = count | CV_SET_ELEM_FREE_FLAG;
|
|
((CvSetElem*)ptr)->next_free = (CvSetElem*)(ptr + elem_size);
|
|
}
|
|
assert( count <= CV_SET_ELEM_IDX_MASK+1 );
|
|
((CvSetElem*)(ptr - elem_size))->next_free = 0;
|
|
set->first->prev->count += count - set->total;
|
|
set->total = count;
|
|
set->ptr = set->block_max;
|
|
}
|
|
|
|
free_elem = set->free_elems;
|
|
set->free_elems = free_elem->next_free;
|
|
|
|
id = free_elem->flags & CV_SET_ELEM_IDX_MASK;
|
|
if( element )
|
|
memcpy( free_elem, element, set->elem_size );
|
|
|
|
free_elem->flags = id;
|
|
set->active_count++;
|
|
|
|
if( inserted_element )
|
|
*inserted_element = free_elem;
|
|
|
|
return id;
|
|
}
|
|
|
|
|
|
/* Remove element from a set given element index: */
|
|
CV_IMPL void
|
|
cvSetRemove( CvSet* set, int index )
|
|
{
|
|
CvSetElem* elem = cvGetSetElem( set, index );
|
|
if( elem )
|
|
cvSetRemoveByPtr( set, elem );
|
|
else if( !set )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
}
|
|
|
|
|
|
/* Remove all elements from a set: */
|
|
CV_IMPL void
|
|
cvClearSet( CvSet* set )
|
|
{
|
|
cvClearSeq( (CvSeq*)set );
|
|
set->free_elems = 0;
|
|
set->active_count = 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Graph implementation *
|
|
\****************************************************************************************/
|
|
|
|
/* Create a new graph: */
|
|
CV_IMPL CvGraph *
|
|
cvCreateGraph( int graph_type, int header_size,
|
|
int vtx_size, int edge_size, CvMemStorage * storage )
|
|
{
|
|
CvGraph *graph = 0;
|
|
CvSet *edges = 0;
|
|
CvSet *vertices = 0;
|
|
|
|
if( header_size < (int) sizeof( CvGraph )
|
|
|| edge_size < (int) sizeof( CvGraphEdge )
|
|
|| vtx_size < (int) sizeof( CvGraphVtx )
|
|
){
|
|
CV_Error( CV_StsBadSize, "" );
|
|
}
|
|
|
|
vertices = cvCreateSet( graph_type, header_size, vtx_size, storage );
|
|
edges = cvCreateSet( CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_GRAPH_EDGE,
|
|
sizeof( CvSet ), edge_size, storage );
|
|
|
|
graph = (CvGraph*)vertices;
|
|
graph->edges = edges;
|
|
|
|
return graph;
|
|
}
|
|
|
|
|
|
/* Remove all vertices and edges from a graph: */
|
|
CV_IMPL void
|
|
cvClearGraph( CvGraph * graph )
|
|
{
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
cvClearSet( graph->edges );
|
|
cvClearSet( (CvSet*)graph );
|
|
}
|
|
|
|
|
|
/* Add a vertex to a graph: */
|
|
CV_IMPL int
|
|
cvGraphAddVtx( CvGraph* graph, const CvGraphVtx* _vertex, CvGraphVtx** _inserted_vertex )
|
|
{
|
|
CvGraphVtx *vertex = 0;
|
|
int index = -1;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
vertex = (CvGraphVtx*)cvSetNew((CvSet*)graph);
|
|
if( vertex )
|
|
{
|
|
if( _vertex )
|
|
memcpy( vertex + 1, _vertex + 1, graph->elem_size - sizeof(CvGraphVtx) );
|
|
vertex->first = 0;
|
|
index = vertex->flags;
|
|
}
|
|
|
|
if( _inserted_vertex )
|
|
*_inserted_vertex = vertex;
|
|
|
|
return index;
|
|
}
|
|
|
|
|
|
/* Remove a vertex from the graph together with its incident edges: */
|
|
CV_IMPL int
|
|
cvGraphRemoveVtxByPtr( CvGraph* graph, CvGraphVtx* vtx )
|
|
{
|
|
int count = -1;
|
|
|
|
if( !graph || !vtx )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( !CV_IS_SET_ELEM(vtx))
|
|
CV_Error( CV_StsBadArg, "The vertex does not belong to the graph" );
|
|
|
|
count = graph->edges->active_count;
|
|
for( ;; )
|
|
{
|
|
CvGraphEdge *edge = vtx->first;
|
|
if( !edge )
|
|
break;
|
|
cvGraphRemoveEdgeByPtr( graph, edge->vtx[0], edge->vtx[1] );
|
|
}
|
|
count -= graph->edges->active_count;
|
|
cvSetRemoveByPtr( (CvSet*)graph, vtx );
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
/* Remove a vertex from the graph together with its incident edges: */
|
|
CV_IMPL int
|
|
cvGraphRemoveVtx( CvGraph* graph, int index )
|
|
{
|
|
int count = -1;
|
|
CvGraphVtx *vtx = 0;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
vtx = cvGetGraphVtx( graph, index );
|
|
if( !vtx )
|
|
CV_Error( CV_StsBadArg, "The vertex is not found" );
|
|
|
|
count = graph->edges->active_count;
|
|
for( ;; )
|
|
{
|
|
CvGraphEdge *edge = vtx->first;
|
|
count++;
|
|
|
|
if( !edge )
|
|
break;
|
|
cvGraphRemoveEdgeByPtr( graph, edge->vtx[0], edge->vtx[1] );
|
|
}
|
|
count -= graph->edges->active_count;
|
|
cvSetRemoveByPtr( (CvSet*)graph, vtx );
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
/* Find a graph edge given pointers to the ending vertices: */
|
|
CV_IMPL CvGraphEdge*
|
|
cvFindGraphEdgeByPtr( const CvGraph* graph,
|
|
const CvGraphVtx* start_vtx,
|
|
const CvGraphVtx* end_vtx )
|
|
{
|
|
int ofs = 0;
|
|
|
|
if( !graph || !start_vtx || !end_vtx )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( start_vtx == end_vtx )
|
|
return 0;
|
|
|
|
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
|
|
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
|
|
{
|
|
const CvGraphVtx* t;
|
|
CV_SWAP( start_vtx, end_vtx, t );
|
|
}
|
|
|
|
CvGraphEdge* edge = start_vtx->first;
|
|
for( ; edge; edge = edge->next[ofs] )
|
|
{
|
|
ofs = start_vtx == edge->vtx[1];
|
|
assert( ofs == 1 || start_vtx == edge->vtx[0] );
|
|
if( edge->vtx[1] == end_vtx )
|
|
break;
|
|
}
|
|
|
|
return edge;
|
|
}
|
|
|
|
|
|
/* Find an edge in the graph given indices of the ending vertices: */
|
|
CV_IMPL CvGraphEdge *
|
|
cvFindGraphEdge( const CvGraph* graph, int start_idx, int end_idx )
|
|
{
|
|
CvGraphVtx *start_vtx;
|
|
CvGraphVtx *end_vtx;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "graph pointer is NULL" );
|
|
|
|
start_vtx = cvGetGraphVtx( graph, start_idx );
|
|
end_vtx = cvGetGraphVtx( graph, end_idx );
|
|
|
|
return cvFindGraphEdgeByPtr( graph, start_vtx, end_vtx );
|
|
}
|
|
|
|
|
|
/* Given two vertices, return the edge
|
|
* connecting them, creating it if it
|
|
* did not already exist:
|
|
*/
|
|
CV_IMPL int
|
|
cvGraphAddEdgeByPtr( CvGraph* graph,
|
|
CvGraphVtx* start_vtx, CvGraphVtx* end_vtx,
|
|
const CvGraphEdge* _edge,
|
|
CvGraphEdge ** _inserted_edge )
|
|
{
|
|
CvGraphEdge *edge = 0;
|
|
int result = -1;
|
|
int delta;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "graph pointer is NULL" );
|
|
|
|
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
|
|
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
|
|
{
|
|
CvGraphVtx* t;
|
|
CV_SWAP( start_vtx, end_vtx, t );
|
|
}
|
|
|
|
edge = cvFindGraphEdgeByPtr( graph, start_vtx, end_vtx );
|
|
if( edge )
|
|
{
|
|
result = 0;
|
|
if( _inserted_edge )
|
|
*_inserted_edge = edge;
|
|
return result;
|
|
}
|
|
|
|
if( start_vtx == end_vtx )
|
|
CV_Error( start_vtx ? CV_StsBadArg : CV_StsNullPtr,
|
|
"vertex pointers coinside (or set to NULL)" );
|
|
|
|
edge = (CvGraphEdge*)cvSetNew( (CvSet*)(graph->edges) );
|
|
assert( edge->flags >= 0 );
|
|
|
|
edge->vtx[0] = start_vtx;
|
|
edge->vtx[1] = end_vtx;
|
|
edge->next[0] = start_vtx->first;
|
|
edge->next[1] = end_vtx->first;
|
|
start_vtx->first = end_vtx->first = edge;
|
|
|
|
delta = graph->edges->elem_size - sizeof(*edge);
|
|
if( _edge )
|
|
{
|
|
if( delta > 0 )
|
|
memcpy( edge + 1, _edge + 1, delta );
|
|
edge->weight = _edge->weight;
|
|
}
|
|
else
|
|
{
|
|
if( delta > 0 )
|
|
memset( edge + 1, 0, delta );
|
|
edge->weight = 1.f;
|
|
}
|
|
|
|
result = 1;
|
|
|
|
if( _inserted_edge )
|
|
*_inserted_edge = edge;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Given two vertices, return the edge
|
|
* connecting them, creating it if it
|
|
* did not already exist:
|
|
*/
|
|
CV_IMPL int
|
|
cvGraphAddEdge( CvGraph* graph,
|
|
int start_idx, int end_idx,
|
|
const CvGraphEdge* _edge,
|
|
CvGraphEdge ** _inserted_edge )
|
|
{
|
|
CvGraphVtx *start_vtx;
|
|
CvGraphVtx *end_vtx;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
start_vtx = cvGetGraphVtx( graph, start_idx );
|
|
end_vtx = cvGetGraphVtx( graph, end_idx );
|
|
|
|
return cvGraphAddEdgeByPtr( graph, start_vtx, end_vtx, _edge, _inserted_edge );
|
|
}
|
|
|
|
|
|
/* Remove the graph edge connecting two given vertices: */
|
|
CV_IMPL void
|
|
cvGraphRemoveEdgeByPtr( CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx )
|
|
{
|
|
int ofs, prev_ofs;
|
|
CvGraphEdge *edge, *next_edge, *prev_edge;
|
|
|
|
if( !graph || !start_vtx || !end_vtx )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( start_vtx == end_vtx )
|
|
return;
|
|
|
|
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
|
|
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
|
|
{
|
|
CvGraphVtx* t;
|
|
CV_SWAP( start_vtx, end_vtx, t );
|
|
}
|
|
|
|
for( ofs = prev_ofs = 0, prev_edge = 0, edge = start_vtx->first; edge != 0;
|
|
prev_ofs = ofs, prev_edge = edge, edge = edge->next[ofs] )
|
|
{
|
|
ofs = start_vtx == edge->vtx[1];
|
|
assert( ofs == 1 || start_vtx == edge->vtx[0] );
|
|
if( edge->vtx[1] == end_vtx )
|
|
break;
|
|
}
|
|
|
|
if( !edge )
|
|
return;
|
|
|
|
next_edge = edge->next[ofs];
|
|
if( prev_edge )
|
|
prev_edge->next[prev_ofs] = next_edge;
|
|
else
|
|
start_vtx->first = next_edge;
|
|
|
|
for( ofs = prev_ofs = 0, prev_edge = 0, edge = end_vtx->first; edge != 0;
|
|
prev_ofs = ofs, prev_edge = edge, edge = edge->next[ofs] )
|
|
{
|
|
ofs = end_vtx == edge->vtx[1];
|
|
assert( ofs == 1 || end_vtx == edge->vtx[0] );
|
|
if( edge->vtx[0] == start_vtx )
|
|
break;
|
|
}
|
|
|
|
assert( edge != 0 );
|
|
|
|
next_edge = edge->next[ofs];
|
|
if( prev_edge )
|
|
prev_edge->next[prev_ofs] = next_edge;
|
|
else
|
|
end_vtx->first = next_edge;
|
|
|
|
cvSetRemoveByPtr( graph->edges, edge );
|
|
}
|
|
|
|
|
|
/* Remove the graph edge connecting two given vertices: */
|
|
CV_IMPL void
|
|
cvGraphRemoveEdge( CvGraph* graph, int start_idx, int end_idx )
|
|
{
|
|
CvGraphVtx *start_vtx;
|
|
CvGraphVtx *end_vtx;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
start_vtx = cvGetGraphVtx( graph, start_idx );
|
|
end_vtx = cvGetGraphVtx( graph, end_idx );
|
|
|
|
cvGraphRemoveEdgeByPtr( graph, start_vtx, end_vtx );
|
|
}
|
|
|
|
|
|
/* Count number of edges incident to a given vertex: */
|
|
CV_IMPL int
|
|
cvGraphVtxDegreeByPtr( const CvGraph* graph, const CvGraphVtx* vertex )
|
|
{
|
|
CvGraphEdge *edge;
|
|
int count;
|
|
|
|
if( !graph || !vertex )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
for( edge = vertex->first, count = 0; edge; )
|
|
{
|
|
count++;
|
|
edge = CV_NEXT_GRAPH_EDGE( edge, vertex );
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
/* Count number of edges incident to a given vertex: */
|
|
CV_IMPL int
|
|
cvGraphVtxDegree( const CvGraph* graph, int vtx_idx )
|
|
{
|
|
CvGraphVtx *vertex;
|
|
CvGraphEdge *edge;
|
|
int count;
|
|
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
vertex = cvGetGraphVtx( graph, vtx_idx );
|
|
if( !vertex )
|
|
CV_Error( CV_StsObjectNotFound, "" );
|
|
|
|
for( edge = vertex->first, count = 0; edge; )
|
|
{
|
|
count++;
|
|
edge = CV_NEXT_GRAPH_EDGE( edge, vertex );
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
typedef struct CvGraphItem
|
|
{
|
|
CvGraphVtx* vtx;
|
|
CvGraphEdge* edge;
|
|
}
|
|
CvGraphItem;
|
|
|
|
|
|
static void
|
|
icvSeqElemsClearFlags( CvSeq* seq, int offset, int clear_mask )
|
|
{
|
|
CvSeqReader reader;
|
|
int i, total, elem_size;
|
|
|
|
if( !seq )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
total = seq->total;
|
|
|
|
if( (unsigned)offset > (unsigned)elem_size )
|
|
CV_Error( CV_StsBadArg, "" );
|
|
|
|
cvStartReadSeq( seq, &reader );
|
|
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
int* flag_ptr = (int*)(reader.ptr + offset);
|
|
*flag_ptr &= ~clear_mask;
|
|
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader );
|
|
}
|
|
}
|
|
|
|
|
|
static schar*
|
|
icvSeqFindNextElem( CvSeq* seq, int offset, int mask,
|
|
int value, int* start_index )
|
|
{
|
|
schar* elem_ptr = 0;
|
|
|
|
CvSeqReader reader;
|
|
int total, elem_size, index;
|
|
|
|
if( !seq || !start_index )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
elem_size = seq->elem_size;
|
|
total = seq->total;
|
|
index = *start_index;
|
|
|
|
if( (unsigned)offset > (unsigned)elem_size )
|
|
CV_Error( CV_StsBadArg, "" );
|
|
|
|
if( total == 0 )
|
|
return 0;
|
|
|
|
if( (unsigned)index >= (unsigned)total )
|
|
{
|
|
index %= total;
|
|
index += index < 0 ? total : 0;
|
|
}
|
|
|
|
cvStartReadSeq( seq, &reader );
|
|
|
|
if( index != 0 )
|
|
cvSetSeqReaderPos( &reader, index );
|
|
|
|
for( index = 0; index < total; index++ )
|
|
{
|
|
int* flag_ptr = (int*)(reader.ptr + offset);
|
|
if( (*flag_ptr & mask) == value )
|
|
break;
|
|
|
|
CV_NEXT_SEQ_ELEM( elem_size, reader );
|
|
}
|
|
|
|
if( index < total )
|
|
{
|
|
elem_ptr = reader.ptr;
|
|
*start_index = index;
|
|
}
|
|
|
|
return elem_ptr;
|
|
}
|
|
|
|
#define CV_FIELD_OFFSET( field, structtype ) ((int)(size_t)&((structtype*)0)->field)
|
|
|
|
CV_IMPL CvGraphScanner*
|
|
cvCreateGraphScanner( CvGraph* graph, CvGraphVtx* vtx, int mask )
|
|
{
|
|
if( !graph )
|
|
CV_Error( CV_StsNullPtr, "Null graph pointer" );
|
|
|
|
CV_Assert( graph->storage != 0 );
|
|
|
|
CvGraphScanner* scanner = (CvGraphScanner*)cvAlloc( sizeof(*scanner) );
|
|
memset( scanner, 0, sizeof(*scanner));
|
|
|
|
scanner->graph = graph;
|
|
scanner->mask = mask;
|
|
scanner->vtx = vtx;
|
|
scanner->index = vtx == 0 ? 0 : -1;
|
|
|
|
CvMemStorage* child_storage = cvCreateChildMemStorage( graph->storage );
|
|
|
|
scanner->stack = cvCreateSeq( 0, sizeof(CvSet),
|
|
sizeof(CvGraphItem), child_storage );
|
|
|
|
icvSeqElemsClearFlags( (CvSeq*)graph,
|
|
CV_FIELD_OFFSET( flags, CvGraphVtx),
|
|
CV_GRAPH_ITEM_VISITED_FLAG|
|
|
CV_GRAPH_SEARCH_TREE_NODE_FLAG );
|
|
|
|
icvSeqElemsClearFlags( (CvSeq*)(graph->edges),
|
|
CV_FIELD_OFFSET( flags, CvGraphEdge),
|
|
CV_GRAPH_ITEM_VISITED_FLAG );
|
|
|
|
return scanner;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvReleaseGraphScanner( CvGraphScanner** scanner )
|
|
{
|
|
if( !scanner )
|
|
CV_Error( CV_StsNullPtr, "Null double pointer to graph scanner" );
|
|
|
|
if( *scanner )
|
|
{
|
|
if( (*scanner)->stack )
|
|
cvReleaseMemStorage( &((*scanner)->stack->storage));
|
|
cvFree( scanner );
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL int
|
|
cvNextGraphItem( CvGraphScanner* scanner )
|
|
{
|
|
int code = -1;
|
|
CvGraphVtx* vtx;
|
|
CvGraphVtx* dst;
|
|
CvGraphEdge* edge;
|
|
CvGraphItem item;
|
|
|
|
if( !scanner || !(scanner->stack))
|
|
CV_Error( CV_StsNullPtr, "Null graph scanner" );
|
|
|
|
dst = scanner->dst;
|
|
vtx = scanner->vtx;
|
|
edge = scanner->edge;
|
|
|
|
for(;;)
|
|
{
|
|
for(;;)
|
|
{
|
|
if( dst && !CV_IS_GRAPH_VERTEX_VISITED(dst) )
|
|
{
|
|
scanner->vtx = vtx = dst;
|
|
edge = vtx->first;
|
|
dst->flags |= CV_GRAPH_ITEM_VISITED_FLAG;
|
|
|
|
if((scanner->mask & CV_GRAPH_VERTEX))
|
|
{
|
|
scanner->vtx = vtx;
|
|
scanner->edge = vtx->first;
|
|
scanner->dst = 0;
|
|
code = CV_GRAPH_VERTEX;
|
|
return code;
|
|
}
|
|
}
|
|
|
|
while( edge )
|
|
{
|
|
dst = edge->vtx[vtx == edge->vtx[0]];
|
|
|
|
if( !CV_IS_GRAPH_EDGE_VISITED(edge) )
|
|
{
|
|
// Check that the edge is outgoing:
|
|
if( !CV_IS_GRAPH_ORIENTED( scanner->graph ) || dst != edge->vtx[0] )
|
|
{
|
|
edge->flags |= CV_GRAPH_ITEM_VISITED_FLAG;
|
|
|
|
if( !CV_IS_GRAPH_VERTEX_VISITED(dst) )
|
|
{
|
|
item.vtx = vtx;
|
|
item.edge = edge;
|
|
|
|
vtx->flags |= CV_GRAPH_SEARCH_TREE_NODE_FLAG;
|
|
|
|
cvSeqPush( scanner->stack, &item );
|
|
|
|
if( scanner->mask & CV_GRAPH_TREE_EDGE )
|
|
{
|
|
code = CV_GRAPH_TREE_EDGE;
|
|
scanner->vtx = vtx;
|
|
scanner->dst = dst;
|
|
scanner->edge = edge;
|
|
return code;
|
|
}
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if( scanner->mask & (CV_GRAPH_BACK_EDGE|
|
|
CV_GRAPH_CROSS_EDGE|
|
|
CV_GRAPH_FORWARD_EDGE) )
|
|
{
|
|
code = (dst->flags & CV_GRAPH_SEARCH_TREE_NODE_FLAG) ?
|
|
CV_GRAPH_BACK_EDGE :
|
|
(edge->flags & CV_GRAPH_FORWARD_EDGE_FLAG) ?
|
|
CV_GRAPH_FORWARD_EDGE : CV_GRAPH_CROSS_EDGE;
|
|
edge->flags &= ~CV_GRAPH_FORWARD_EDGE_FLAG;
|
|
if( scanner->mask & code )
|
|
{
|
|
scanner->vtx = vtx;
|
|
scanner->dst = dst;
|
|
scanner->edge = edge;
|
|
return code;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if( (dst->flags & (CV_GRAPH_ITEM_VISITED_FLAG|
|
|
CV_GRAPH_SEARCH_TREE_NODE_FLAG)) ==
|
|
(CV_GRAPH_ITEM_VISITED_FLAG|
|
|
CV_GRAPH_SEARCH_TREE_NODE_FLAG))
|
|
{
|
|
edge->flags |= CV_GRAPH_FORWARD_EDGE_FLAG;
|
|
}
|
|
}
|
|
|
|
edge = CV_NEXT_GRAPH_EDGE( edge, vtx );
|
|
}
|
|
|
|
if( !edge ) /* need to backtrack */
|
|
{
|
|
if( scanner->stack->total == 0 )
|
|
{
|
|
if( scanner->index >= 0 )
|
|
vtx = 0;
|
|
else
|
|
scanner->index = 0;
|
|
break;
|
|
}
|
|
cvSeqPop( scanner->stack, &item );
|
|
vtx = item.vtx;
|
|
vtx->flags &= ~CV_GRAPH_SEARCH_TREE_NODE_FLAG;
|
|
edge = item.edge;
|
|
dst = 0;
|
|
|
|
if( scanner->mask & CV_GRAPH_BACKTRACKING )
|
|
{
|
|
scanner->vtx = vtx;
|
|
scanner->edge = edge;
|
|
scanner->dst = edge->vtx[vtx == edge->vtx[0]];
|
|
code = CV_GRAPH_BACKTRACKING;
|
|
return code;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( !vtx )
|
|
{
|
|
vtx = (CvGraphVtx*)icvSeqFindNextElem( (CvSeq*)(scanner->graph),
|
|
CV_FIELD_OFFSET( flags, CvGraphVtx ), CV_GRAPH_ITEM_VISITED_FLAG|INT_MIN,
|
|
0, &(scanner->index) );
|
|
|
|
if( !vtx )
|
|
{
|
|
code = CV_GRAPH_OVER;
|
|
break;
|
|
}
|
|
}
|
|
|
|
dst = vtx;
|
|
if( scanner->mask & CV_GRAPH_NEW_TREE )
|
|
{
|
|
scanner->dst = dst;
|
|
scanner->edge = 0;
|
|
scanner->vtx = 0;
|
|
code = CV_GRAPH_NEW_TREE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
|
|
CV_IMPL CvGraph*
|
|
cvCloneGraph( const CvGraph* graph, CvMemStorage* storage )
|
|
{
|
|
int* flag_buffer = 0;
|
|
CvGraphVtx** ptr_buffer = 0;
|
|
CvGraph* result = 0;
|
|
|
|
int i, k;
|
|
int vtx_size, edge_size;
|
|
CvSeqReader reader;
|
|
|
|
if( !CV_IS_GRAPH(graph))
|
|
CV_Error( CV_StsBadArg, "Invalid graph pointer" );
|
|
|
|
if( !storage )
|
|
storage = graph->storage;
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
|
|
|
vtx_size = graph->elem_size;
|
|
edge_size = graph->edges->elem_size;
|
|
|
|
flag_buffer = (int*)cvAlloc( graph->total*sizeof(flag_buffer[0]));
|
|
ptr_buffer = (CvGraphVtx**)cvAlloc( graph->total*sizeof(ptr_buffer[0]));
|
|
result = cvCreateGraph( graph->flags, graph->header_size,
|
|
vtx_size, edge_size, storage );
|
|
memcpy( result + sizeof(CvGraph), graph + sizeof(CvGraph),
|
|
graph->header_size - sizeof(CvGraph));
|
|
|
|
// Pass 1. Save flags, copy vertices:
|
|
cvStartReadSeq( (CvSeq*)graph, &reader );
|
|
for( i = 0, k = 0; i < graph->total; i++ )
|
|
{
|
|
if( CV_IS_SET_ELEM( reader.ptr ))
|
|
{
|
|
CvGraphVtx* vtx = (CvGraphVtx*)reader.ptr;
|
|
CvGraphVtx* dstvtx = 0;
|
|
cvGraphAddVtx( result, vtx, &dstvtx );
|
|
flag_buffer[k] = dstvtx->flags = vtx->flags;
|
|
vtx->flags = k;
|
|
ptr_buffer[k++] = dstvtx;
|
|
}
|
|
CV_NEXT_SEQ_ELEM( vtx_size, reader );
|
|
}
|
|
|
|
// Pass 2. Copy edges:
|
|
cvStartReadSeq( (CvSeq*)graph->edges, &reader );
|
|
for( i = 0; i < graph->edges->total; i++ )
|
|
{
|
|
if( CV_IS_SET_ELEM( reader.ptr ))
|
|
{
|
|
CvGraphEdge* edge = (CvGraphEdge*)reader.ptr;
|
|
CvGraphEdge* dstedge = 0;
|
|
CvGraphVtx* new_org = ptr_buffer[edge->vtx[0]->flags];
|
|
CvGraphVtx* new_dst = ptr_buffer[edge->vtx[1]->flags];
|
|
cvGraphAddEdgeByPtr( result, new_org, new_dst, edge, &dstedge );
|
|
dstedge->flags = edge->flags;
|
|
}
|
|
CV_NEXT_SEQ_ELEM( edge_size, reader );
|
|
}
|
|
|
|
// Pass 3. Restore flags:
|
|
cvStartReadSeq( (CvSeq*)graph, &reader );
|
|
for( i = 0, k = 0; i < graph->edges->total; i++ )
|
|
{
|
|
if( CV_IS_SET_ELEM( reader.ptr ))
|
|
{
|
|
CvGraphVtx* vtx = (CvGraphVtx*)reader.ptr;
|
|
vtx->flags = flag_buffer[k++];
|
|
}
|
|
CV_NEXT_SEQ_ELEM( vtx_size, reader );
|
|
}
|
|
|
|
cvFree( &flag_buffer );
|
|
cvFree( &ptr_buffer );
|
|
|
|
if( cvGetErrStatus() < 0 )
|
|
result = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Working with sequence tree *
|
|
\****************************************************************************************/
|
|
|
|
// Gather pointers to all the sequences, accessible from the <first>, to the single sequence.
|
|
CV_IMPL CvSeq*
|
|
cvTreeToNodeSeq( const void* first, int header_size, CvMemStorage* storage )
|
|
{
|
|
CvSeq* allseq = 0;
|
|
CvTreeNodeIterator iterator;
|
|
|
|
if( !storage )
|
|
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
|
|
|
allseq = cvCreateSeq( 0, header_size, sizeof(first), storage );
|
|
|
|
if( first )
|
|
{
|
|
cvInitTreeNodeIterator( &iterator, first, INT_MAX );
|
|
|
|
for(;;)
|
|
{
|
|
void* node = cvNextTreeNode( &iterator );
|
|
if( !node )
|
|
break;
|
|
cvSeqPush( allseq, &node );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
return allseq;
|
|
}
|
|
|
|
|
|
typedef struct CvTreeNode
|
|
{
|
|
int flags; /* micsellaneous flags */
|
|
int header_size; /* size of sequence header */
|
|
struct CvTreeNode* h_prev; /* previous sequence */
|
|
struct CvTreeNode* h_next; /* next sequence */
|
|
struct CvTreeNode* v_prev; /* 2nd previous sequence */
|
|
struct CvTreeNode* v_next; /* 2nd next sequence */
|
|
}
|
|
CvTreeNode;
|
|
|
|
|
|
|
|
// Insert contour into tree given certain parent sequence.
|
|
// If parent is equal to frame (the most external contour),
|
|
// then added contour will have null pointer to parent:
|
|
CV_IMPL void
|
|
cvInsertNodeIntoTree( void* _node, void* _parent, void* _frame )
|
|
{
|
|
CvTreeNode* node = (CvTreeNode*)_node;
|
|
CvTreeNode* parent = (CvTreeNode*)_parent;
|
|
|
|
if( !node || !parent )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
node->v_prev = _parent != _frame ? parent : 0;
|
|
node->h_next = parent->v_next;
|
|
|
|
assert( parent->v_next != node );
|
|
|
|
if( parent->v_next )
|
|
parent->v_next->h_prev = node;
|
|
parent->v_next = node;
|
|
}
|
|
|
|
|
|
// Remove contour from tree, together with the contour's children:
|
|
CV_IMPL void
|
|
cvRemoveNodeFromTree( void* _node, void* _frame )
|
|
{
|
|
CvTreeNode* node = (CvTreeNode*)_node;
|
|
CvTreeNode* frame = (CvTreeNode*)_frame;
|
|
|
|
if( !node )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( node == frame )
|
|
CV_Error( CV_StsBadArg, "frame node could not be deleted" );
|
|
|
|
if( node->h_next )
|
|
node->h_next->h_prev = node->h_prev;
|
|
|
|
if( node->h_prev )
|
|
node->h_prev->h_next = node->h_next;
|
|
else
|
|
{
|
|
CvTreeNode* parent = node->v_prev;
|
|
if( !parent )
|
|
parent = frame;
|
|
|
|
if( parent )
|
|
{
|
|
assert( parent->v_next == node );
|
|
parent->v_next = node->h_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvInitTreeNodeIterator( CvTreeNodeIterator* treeIterator,
|
|
const void* first, int max_level )
|
|
{
|
|
if( !treeIterator || !first )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( max_level < 0 )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
treeIterator->node = (void*)first;
|
|
treeIterator->level = 0;
|
|
treeIterator->max_level = max_level;
|
|
}
|
|
|
|
|
|
CV_IMPL void*
|
|
cvNextTreeNode( CvTreeNodeIterator* treeIterator )
|
|
{
|
|
CvTreeNode* prevNode = 0;
|
|
CvTreeNode* node;
|
|
int level;
|
|
|
|
if( !treeIterator )
|
|
CV_Error( CV_StsNullPtr, "NULL iterator pointer" );
|
|
|
|
prevNode = node = (CvTreeNode*)treeIterator->node;
|
|
level = treeIterator->level;
|
|
|
|
if( node )
|
|
{
|
|
if( node->v_next && level+1 < treeIterator->max_level )
|
|
{
|
|
node = node->v_next;
|
|
level++;
|
|
}
|
|
else
|
|
{
|
|
while( node->h_next == 0 )
|
|
{
|
|
node = node->v_prev;
|
|
if( --level < 0 )
|
|
{
|
|
node = 0;
|
|
break;
|
|
}
|
|
}
|
|
node = node && treeIterator->max_level != 0 ? node->h_next : 0;
|
|
}
|
|
}
|
|
|
|
treeIterator->node = node;
|
|
treeIterator->level = level;
|
|
return prevNode;
|
|
}
|
|
|
|
|
|
CV_IMPL void*
|
|
cvPrevTreeNode( CvTreeNodeIterator* treeIterator )
|
|
{
|
|
CvTreeNode* prevNode = 0;
|
|
CvTreeNode* node;
|
|
int level;
|
|
|
|
if( !treeIterator )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
prevNode = node = (CvTreeNode*)treeIterator->node;
|
|
level = treeIterator->level;
|
|
|
|
if( node )
|
|
{
|
|
if( !node->h_prev )
|
|
{
|
|
node = node->v_prev;
|
|
if( --level < 0 )
|
|
node = 0;
|
|
}
|
|
else
|
|
{
|
|
node = node->h_prev;
|
|
|
|
while( node->v_next && level < treeIterator->max_level )
|
|
{
|
|
node = node->v_next;
|
|
level++;
|
|
|
|
while( node->h_next )
|
|
node = node->h_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
treeIterator->node = node;
|
|
treeIterator->level = level;
|
|
return prevNode;
|
|
}
|
|
|
|
|
|
namespace cv
|
|
{
|
|
|
|
// This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and
|
|
// adopted to work with the new OpenCV data structures. It's in cxcore to be shared by
|
|
// both cv (CvFeatureTree) and ml (kNN).
|
|
|
|
// The algorithm is taken from:
|
|
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
|
|
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
|
|
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
|
|
|
|
const int MAX_TREE_DEPTH = 32;
|
|
|
|
KDTree::KDTree()
|
|
{
|
|
maxDepth = -1;
|
|
normType = NORM_L2;
|
|
}
|
|
|
|
KDTree::KDTree(InputArray _points, bool _copyData)
|
|
{
|
|
maxDepth = -1;
|
|
normType = NORM_L2;
|
|
build(_points, _copyData);
|
|
}
|
|
|
|
KDTree::KDTree(InputArray _points, InputArray _labels, bool _copyData)
|
|
{
|
|
maxDepth = -1;
|
|
normType = NORM_L2;
|
|
build(_points, _labels, _copyData);
|
|
}
|
|
|
|
struct SubTree
|
|
{
|
|
SubTree() : first(0), last(0), nodeIdx(0), depth(0) {}
|
|
SubTree(int _first, int _last, int _nodeIdx, int _depth)
|
|
: first(_first), last(_last), nodeIdx(_nodeIdx), depth(_depth) {}
|
|
int first;
|
|
int last;
|
|
int nodeIdx;
|
|
int depth;
|
|
};
|
|
|
|
|
|
static float
|
|
medianPartition( size_t* ofs, int a, int b, const float* vals )
|
|
{
|
|
int k, a0 = a, b0 = b;
|
|
int middle = (a + b)/2;
|
|
while( b > a )
|
|
{
|
|
int i0 = a, i1 = (a+b)/2, i2 = b;
|
|
float v0 = vals[ofs[i0]], v1 = vals[ofs[i1]], v2 = vals[ofs[i2]];
|
|
int ip = v0 < v1 ? (v1 < v2 ? i1 : v0 < v2 ? i2 : i0) :
|
|
v0 < v2 ? i0 : (v1 < v2 ? i2 : i1);
|
|
float pivot = vals[ofs[ip]];
|
|
std::swap(ofs[ip], ofs[i2]);
|
|
|
|
for( i1 = i0, i0--; i1 <= i2; i1++ )
|
|
if( vals[ofs[i1]] <= pivot )
|
|
{
|
|
i0++;
|
|
std::swap(ofs[i0], ofs[i1]);
|
|
}
|
|
if( i0 == middle )
|
|
break;
|
|
if( i0 > middle )
|
|
b = i0 - (b == i0);
|
|
else
|
|
a = i0;
|
|
}
|
|
|
|
float pivot = vals[ofs[middle]];
|
|
int less = 0, more = 0;
|
|
for( k = a0; k < middle; k++ )
|
|
{
|
|
CV_Assert(vals[ofs[k]] <= pivot);
|
|
less += vals[ofs[k]] < pivot;
|
|
}
|
|
for( k = b0; k > middle; k-- )
|
|
{
|
|
CV_Assert(vals[ofs[k]] >= pivot);
|
|
more += vals[ofs[k]] > pivot;
|
|
}
|
|
CV_Assert(std::abs(more - less) <= 1);
|
|
|
|
return vals[ofs[middle]];
|
|
}
|
|
|
|
static void
|
|
computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums )
|
|
{
|
|
int i, j, dims = points.cols;
|
|
const float* data = points.ptr<float>(0);
|
|
for( j = 0; j < dims; j++ )
|
|
sums[j*2] = sums[j*2+1] = 0;
|
|
for( i = a; i <= b; i++ )
|
|
{
|
|
const float* row = data + ofs[i];
|
|
for( j = 0; j < dims; j++ )
|
|
{
|
|
double t = row[j], s = sums[j*2] + t, s2 = sums[j*2+1] + t*t;
|
|
sums[j*2] = s; sums[j*2+1] = s2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void KDTree::build(InputArray _points, bool _copyData)
|
|
{
|
|
build(_points, noArray(), _copyData);
|
|
}
|
|
|
|
|
|
void KDTree::build(InputArray __points, InputArray __labels, bool _copyData)
|
|
{
|
|
Mat _points = __points.getMat(), _labels = __labels.getMat();
|
|
CV_Assert(_points.type() == CV_32F && !_points.empty());
|
|
std::vector<KDTree::Node>().swap(nodes);
|
|
|
|
if( !_copyData )
|
|
points = _points;
|
|
else
|
|
{
|
|
points.release();
|
|
points.create(_points.size(), _points.type());
|
|
}
|
|
|
|
int i, j, n = _points.rows, ptdims = _points.cols, top = 0;
|
|
const float* data = _points.ptr<float>(0);
|
|
float* dstdata = points.ptr<float>(0);
|
|
size_t step = _points.step1();
|
|
size_t dstep = points.step1();
|
|
int ptpos = 0;
|
|
labels.resize(n);
|
|
const int* _labels_data = 0;
|
|
|
|
if( !_labels.empty() )
|
|
{
|
|
int nlabels = _labels.checkVector(1, CV_32S, true);
|
|
CV_Assert(nlabels == n);
|
|
_labels_data = (const int*)_labels.data;
|
|
}
|
|
|
|
Mat sumstack(MAX_TREE_DEPTH*2, ptdims*2, CV_64F);
|
|
SubTree stack[MAX_TREE_DEPTH*2];
|
|
|
|
std::vector<size_t> _ptofs(n);
|
|
size_t* ptofs = &_ptofs[0];
|
|
|
|
for( i = 0; i < n; i++ )
|
|
ptofs[i] = i*step;
|
|
|
|
nodes.push_back(Node());
|
|
computeSums(points, ptofs, 0, n-1, sumstack.ptr<double>(top));
|
|
stack[top++] = SubTree(0, n-1, 0, 0);
|
|
int _maxDepth = 0;
|
|
|
|
while( --top >= 0 )
|
|
{
|
|
int first = stack[top].first, last = stack[top].last;
|
|
int depth = stack[top].depth, nidx = stack[top].nodeIdx;
|
|
int count = last - first + 1, dim = -1;
|
|
const double* sums = sumstack.ptr<double>(top);
|
|
double invCount = 1./count, maxVar = -1.;
|
|
|
|
if( count == 1 )
|
|
{
|
|
int idx0 = (int)(ptofs[first]/step);
|
|
int idx = _copyData ? ptpos++ : idx0;
|
|
nodes[nidx].idx = ~idx;
|
|
if( _copyData )
|
|
{
|
|
const float* src = data + ptofs[first];
|
|
float* dst = dstdata + idx*dstep;
|
|
for( j = 0; j < ptdims; j++ )
|
|
dst[j] = src[j];
|
|
}
|
|
labels[idx] = _labels_data ? _labels_data[idx0] : idx0;
|
|
_maxDepth = std::max(_maxDepth, depth);
|
|
continue;
|
|
}
|
|
|
|
// find the dimensionality with the biggest variance
|
|
for( j = 0; j < ptdims; j++ )
|
|
{
|
|
double m = sums[j*2]*invCount;
|
|
double varj = sums[j*2+1]*invCount - m*m;
|
|
if( maxVar < varj )
|
|
{
|
|
maxVar = varj;
|
|
dim = j;
|
|
}
|
|
}
|
|
|
|
int left = (int)nodes.size(), right = left + 1;
|
|
nodes.push_back(Node());
|
|
nodes.push_back(Node());
|
|
nodes[nidx].idx = dim;
|
|
nodes[nidx].left = left;
|
|
nodes[nidx].right = right;
|
|
nodes[nidx].boundary = medianPartition(ptofs, first, last, data + dim);
|
|
|
|
int middle = (first + last)/2;
|
|
double *lsums = (double*)sums, *rsums = lsums + ptdims*2;
|
|
computeSums(points, ptofs, middle+1, last, rsums);
|
|
for( j = 0; j < ptdims*2; j++ )
|
|
lsums[j] = sums[j] - rsums[j];
|
|
stack[top++] = SubTree(first, middle, left, depth+1);
|
|
stack[top++] = SubTree(middle+1, last, right, depth+1);
|
|
}
|
|
maxDepth = _maxDepth;
|
|
}
|
|
|
|
|
|
struct PQueueElem
|
|
{
|
|
PQueueElem() : dist(0), idx(0) {}
|
|
PQueueElem(float _dist, int _idx) : dist(_dist), idx(_idx) {}
|
|
float dist;
|
|
int idx;
|
|
};
|
|
|
|
|
|
int KDTree::findNearest(InputArray _vec, int K, int emax,
|
|
OutputArray _neighborsIdx, OutputArray _neighbors,
|
|
OutputArray _dist, OutputArray _labels) const
|
|
|
|
{
|
|
Mat vecmat = _vec.getMat();
|
|
CV_Assert( vecmat.isContinuous() && vecmat.type() == CV_32F && vecmat.total() == (size_t)points.cols );
|
|
const float* vec = vecmat.ptr<float>();
|
|
K = std::min(K, points.rows);
|
|
int ptdims = points.cols;
|
|
|
|
CV_Assert(K > 0 && (normType == NORM_L2 || normType == NORM_L1));
|
|
|
|
AutoBuffer<uchar> _buf((K+1)*(sizeof(float) + sizeof(int)));
|
|
int* idx = (int*)(uchar*)_buf;
|
|
float* dist = (float*)(idx + K + 1);
|
|
int i, j, ncount = 0, e = 0;
|
|
|
|
int qsize = 0, maxqsize = 1 << 10;
|
|
AutoBuffer<uchar> _pqueue(maxqsize*sizeof(PQueueElem));
|
|
PQueueElem* pqueue = (PQueueElem*)(uchar*)_pqueue;
|
|
emax = std::max(emax, 1);
|
|
|
|
for( e = 0; e < emax; )
|
|
{
|
|
float d, alt_d = 0.f;
|
|
int nidx;
|
|
|
|
if( e == 0 )
|
|
nidx = 0;
|
|
else
|
|
{
|
|
// take the next node from the priority queue
|
|
if( qsize == 0 )
|
|
break;
|
|
nidx = pqueue[0].idx;
|
|
alt_d = pqueue[0].dist;
|
|
if( --qsize > 0 )
|
|
{
|
|
std::swap(pqueue[0], pqueue[qsize]);
|
|
d = pqueue[0].dist;
|
|
for( i = 0;;)
|
|
{
|
|
int left = i*2 + 1, right = i*2 + 2;
|
|
if( left >= qsize )
|
|
break;
|
|
if( right < qsize && pqueue[right].dist < pqueue[left].dist )
|
|
left = right;
|
|
if( pqueue[left].dist >= d )
|
|
break;
|
|
std::swap(pqueue[i], pqueue[left]);
|
|
i = left;
|
|
}
|
|
}
|
|
|
|
if( ncount == K && alt_d > dist[ncount-1] )
|
|
continue;
|
|
}
|
|
|
|
for(;;)
|
|
{
|
|
if( nidx < 0 )
|
|
break;
|
|
const Node& n = nodes[nidx];
|
|
|
|
if( n.idx < 0 )
|
|
{
|
|
i = ~n.idx;
|
|
const float* row = points.ptr<float>(i);
|
|
if( normType == NORM_L2 )
|
|
for( j = 0, d = 0.f; j < ptdims; j++ )
|
|
{
|
|
float t = vec[j] - row[j];
|
|
d += t*t;
|
|
}
|
|
else
|
|
for( j = 0, d = 0.f; j < ptdims; j++ )
|
|
d += std::abs(vec[j] - row[j]);
|
|
|
|
dist[ncount] = d;
|
|
idx[ncount] = i;
|
|
for( i = ncount-1; i >= 0; i-- )
|
|
{
|
|
if( dist[i] <= d )
|
|
break;
|
|
std::swap(dist[i], dist[i+1]);
|
|
std::swap(idx[i], idx[i+1]);
|
|
}
|
|
ncount += ncount < K;
|
|
e++;
|
|
break;
|
|
}
|
|
|
|
int alt;
|
|
if( vec[n.idx] <= n.boundary )
|
|
{
|
|
nidx = n.left;
|
|
alt = n.right;
|
|
}
|
|
else
|
|
{
|
|
nidx = n.right;
|
|
alt = n.left;
|
|
}
|
|
|
|
d = vec[n.idx] - n.boundary;
|
|
if( normType == NORM_L2 )
|
|
d = d*d + alt_d;
|
|
else
|
|
d = std::abs(d) + alt_d;
|
|
// subtree prunning
|
|
if( ncount == K && d > dist[ncount-1] )
|
|
continue;
|
|
// add alternative subtree to the priority queue
|
|
pqueue[qsize] = PQueueElem(d, alt);
|
|
for( i = qsize; i > 0; )
|
|
{
|
|
int parent = (i-1)/2;
|
|
if( parent < 0 || pqueue[parent].dist <= d )
|
|
break;
|
|
std::swap(pqueue[i], pqueue[parent]);
|
|
i = parent;
|
|
}
|
|
qsize += qsize+1 < maxqsize;
|
|
}
|
|
}
|
|
|
|
K = std::min(K, ncount);
|
|
if( _neighborsIdx.needed() )
|
|
{
|
|
_neighborsIdx.create(K, 1, CV_32S, -1, true);
|
|
Mat nidx = _neighborsIdx.getMat();
|
|
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
|
|
}
|
|
if( _dist.needed() )
|
|
sqrt(Mat(K, 1, CV_32F, dist), _dist);
|
|
|
|
if( _neighbors.needed() || _labels.needed() )
|
|
getPoints(Mat(K, 1, CV_32S, idx), _neighbors, _labels);
|
|
return K;
|
|
}
|
|
|
|
|
|
void KDTree::findOrthoRange(InputArray _lowerBound,
|
|
InputArray _upperBound,
|
|
OutputArray _neighborsIdx,
|
|
OutputArray _neighbors,
|
|
OutputArray _labels ) const
|
|
{
|
|
int ptdims = points.cols;
|
|
Mat lowerBound = _lowerBound.getMat(), upperBound = _upperBound.getMat();
|
|
CV_Assert( lowerBound.size == upperBound.size &&
|
|
lowerBound.isContinuous() &&
|
|
upperBound.isContinuous() &&
|
|
lowerBound.type() == upperBound.type() &&
|
|
lowerBound.type() == CV_32F &&
|
|
lowerBound.total() == (size_t)ptdims );
|
|
const float* L = lowerBound.ptr<float>();
|
|
const float* R = upperBound.ptr<float>();
|
|
|
|
std::vector<int> idx;
|
|
AutoBuffer<int> _stack(MAX_TREE_DEPTH*2 + 1);
|
|
int* stack = _stack;
|
|
int top = 0;
|
|
|
|
stack[top++] = 0;
|
|
|
|
while( --top >= 0 )
|
|
{
|
|
int nidx = stack[top];
|
|
if( nidx < 0 )
|
|
break;
|
|
const Node& n = nodes[nidx];
|
|
if( n.idx < 0 )
|
|
{
|
|
int j, i = ~n.idx;
|
|
const float* row = points.ptr<float>(i);
|
|
for( j = 0; j < ptdims; j++ )
|
|
if( row[j] < L[j] || row[j] >= R[j] )
|
|
break;
|
|
if( j == ptdims )
|
|
idx.push_back(i);
|
|
continue;
|
|
}
|
|
if( L[n.idx] <= n.boundary )
|
|
stack[top++] = n.left;
|
|
if( R[n.idx] > n.boundary )
|
|
stack[top++] = n.right;
|
|
}
|
|
|
|
if( _neighborsIdx.needed() )
|
|
{
|
|
_neighborsIdx.create((int)idx.size(), 1, CV_32S, -1, true);
|
|
Mat nidx = _neighborsIdx.getMat();
|
|
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
|
|
}
|
|
getPoints( idx, _neighbors, _labels );
|
|
}
|
|
|
|
|
|
void KDTree::getPoints(InputArray _idx, OutputArray _pts, OutputArray _labels) const
|
|
{
|
|
Mat idxmat = _idx.getMat(), pts, labelsmat;
|
|
CV_Assert( idxmat.isContinuous() && idxmat.type() == CV_32S &&
|
|
(idxmat.cols == 1 || idxmat.rows == 1) );
|
|
const int* idx = idxmat.ptr<int>();
|
|
int* dstlabels = 0;
|
|
|
|
int ptdims = points.cols;
|
|
int i, nidx = (int)idxmat.total();
|
|
if( nidx == 0 )
|
|
{
|
|
_pts.release();
|
|
_labels.release();
|
|
return;
|
|
}
|
|
|
|
if( _pts.needed() )
|
|
{
|
|
_pts.create( nidx, ptdims, points.type());
|
|
pts = _pts.getMat();
|
|
}
|
|
|
|
if(_labels.needed())
|
|
{
|
|
_labels.create(nidx, 1, CV_32S, -1, true);
|
|
labelsmat = _labels.getMat();
|
|
CV_Assert( labelsmat.isContinuous() );
|
|
dstlabels = labelsmat.ptr<int>();
|
|
}
|
|
const int* srclabels = !labels.empty() ? &labels[0] : 0;
|
|
|
|
for( i = 0; i < nidx; i++ )
|
|
{
|
|
int k = idx[i];
|
|
CV_Assert( (unsigned)k < (unsigned)points.rows );
|
|
const float* src = points.ptr<float>(k);
|
|
if( pts.data )
|
|
std::copy(src, src + ptdims, pts.ptr<float>(i));
|
|
if( dstlabels )
|
|
dstlabels[i] = srclabels ? srclabels[k] : k;
|
|
}
|
|
}
|
|
|
|
|
|
const float* KDTree::getPoint(int ptidx, int* label) const
|
|
{
|
|
CV_Assert( (unsigned)ptidx < (unsigned)points.rows);
|
|
if(label)
|
|
*label = labels[ptidx];
|
|
return points.ptr<float>(ptidx);
|
|
}
|
|
|
|
|
|
int KDTree::dims() const
|
|
{
|
|
return !points.empty() ? points.cols : 0;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
schar* seqPush( CvSeq* seq, const void* element )
|
|
{
|
|
return cvSeqPush(seq, element);
|
|
}
|
|
|
|
schar* seqPushFront( CvSeq* seq, const void* element )
|
|
{
|
|
return cvSeqPushFront(seq, element);
|
|
}
|
|
|
|
void seqPop( CvSeq* seq, void* element )
|
|
{
|
|
cvSeqPop(seq, element);
|
|
}
|
|
|
|
void seqPopFront( CvSeq* seq, void* element )
|
|
{
|
|
cvSeqPopFront(seq, element);
|
|
}
|
|
|
|
void seqRemove( CvSeq* seq, int index )
|
|
{
|
|
cvSeqRemove(seq, index);
|
|
}
|
|
|
|
void clearSeq( CvSeq* seq )
|
|
{
|
|
cvClearSeq(seq);
|
|
}
|
|
|
|
schar* getSeqElem( const CvSeq* seq, int index )
|
|
{
|
|
return cvGetSeqElem(seq, index);
|
|
}
|
|
|
|
void seqRemoveSlice( CvSeq* seq, CvSlice slice )
|
|
{
|
|
return cvSeqRemoveSlice(seq, slice);
|
|
}
|
|
|
|
void seqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr )
|
|
{
|
|
cvSeqInsertSlice(seq, before_index, from_arr);
|
|
}
|
|
|
|
}
|
|
|
|
/* End of file. */
|