mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 09:49:13 +08:00
429 lines
24 KiB
C++
429 lines
24 KiB
C++
/*#******************************************************************************
|
|
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
**
|
|
** By downloading, copying, installing or using the software you agree to this license.
|
|
** If you do not agree to this license, do not download, install,
|
|
** copy or use the software.
|
|
**
|
|
**
|
|
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
|
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
|
|
**
|
|
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
|
**
|
|
** Creation - enhancement process 2007-2011
|
|
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
|
**
|
|
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
|
** Refer to the following research paper for more information:
|
|
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
|
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
|
**
|
|
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
|
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
|
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
|
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
|
** ====> more informations in the above cited Jeanny Heraults's book.
|
|
**
|
|
** License Agreement
|
|
** For Open Source Computer Vision Library
|
|
**
|
|
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
**
|
|
** For Human Visual System tools (hvstools)
|
|
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
|
**
|
|
** Third party copyrights are property of their respective owners.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without modification,
|
|
** are permitted provided that the following conditions are met:
|
|
**
|
|
** * Redistributions of source code must retain the above copyright notice,
|
|
** this list of conditions and the following disclaimer.
|
|
**
|
|
** * Redistributions in binary form must reproduce the above copyright notice,
|
|
** this list of conditions and the following disclaimer in the documentation
|
|
** and/or other materials provided with the distribution.
|
|
**
|
|
** * The name of the copyright holders may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** This software is provided by the copyright holders and contributors "as is" and
|
|
** any express or implied warranties, including, but not limited to, the implied
|
|
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
** indirect, incidental, special, exemplary, or consequential damages
|
|
** (including, but not limited to, procurement of substitute goods or services;
|
|
** loss of use, data, or profits; or business interruption) however caused
|
|
** and on any theory of liability, whether in contract, strict liability,
|
|
** or tort (including negligence or otherwise) arising in any way out of
|
|
** the use of this software, even if advised of the possibility of such damage.
|
|
*******************************************************************************/
|
|
|
|
/*
|
|
* Retina.cpp
|
|
*
|
|
* Created on: Jul 19, 2011
|
|
* Author: Alexandre Benoit
|
|
*/
|
|
#include "precomp.hpp"
|
|
#include "retinafilter.hpp"
|
|
#include <iostream>
|
|
|
|
namespace cv
|
|
{
|
|
|
|
Retina::Retina(const cv::Size inputSize)
|
|
{
|
|
_retinaFilter = 0;
|
|
_init(inputSize, true, RETINA_COLOR_BAYER, false);
|
|
}
|
|
|
|
Retina::Retina(const cv::Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
|
|
{
|
|
_retinaFilter = 0;
|
|
_init(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
|
|
};
|
|
|
|
Retina::~Retina()
|
|
{
|
|
if (_retinaFilter)
|
|
delete _retinaFilter;
|
|
}
|
|
|
|
void Retina::setColorSaturation(const bool saturateColors, const float colorSaturationValue)
|
|
{
|
|
_retinaFilter->setColorSaturation(saturateColors, colorSaturationValue);
|
|
}
|
|
|
|
struct Retina::RetinaParameters Retina::getParameters(){return _retinaParameters;}
|
|
|
|
void Retina::setup(std::string retinaParameterFile, const bool applyDefaultSetupOnFailure)
|
|
{
|
|
// open specified parameters file
|
|
std::cout<<"Retina::setup: setting up retina from parameter file : "<<retinaParameterFile<<std::endl;
|
|
|
|
try
|
|
{
|
|
// opening retinaParameterFile in read mode
|
|
cv::FileStorage fs(retinaParameterFile, cv::FileStorage::READ);
|
|
// read parameters file if it exists or apply default setup if asked for
|
|
if (!fs.isOpened())
|
|
{
|
|
std::cout<<"Retina::setup: provided parameters file could not be open... skeeping configuration"<<std::endl;
|
|
return;
|
|
// implicit else case : retinaParameterFile could be open (it exists at least)
|
|
}
|
|
// OPL and Parvo init first... update at the same time the parameters structure and the retina core
|
|
cv::FileNode rootFn = fs.root(), currFn=rootFn["OPLandIPLparvo"];
|
|
currFn["colorMode"]>>_retinaParameters.OPLandIplParvo.colorMode;
|
|
currFn["normaliseOutput"]>>_retinaParameters.OPLandIplParvo.normaliseOutput;
|
|
currFn["photoreceptorsLocalAdaptationSensitivity"]>>_retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
|
|
currFn["photoreceptorsTemporalConstant"]>>_retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
|
|
currFn["photoreceptorsSpatialConstant"]>>_retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
|
|
currFn["horizontalCellsGain"]>>_retinaParameters.OPLandIplParvo.horizontalCellsGain;
|
|
currFn["hcellsTemporalConstant"]>>_retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
|
|
currFn["hcellsSpatialConstant"]>>_retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
|
|
currFn["ganglionCellsSensitivity"]>>_retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
|
|
setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
|
|
|
|
// init retina IPL magno setup... update at the same time the parameters structure and the retina core
|
|
currFn=rootFn["IPLmagno"];
|
|
currFn["normaliseOutput"]>>_retinaParameters.IplMagno.normaliseOutput;
|
|
currFn["parasolCells_beta"]>>_retinaParameters.IplMagno.parasolCells_beta;
|
|
currFn["parasolCells_tau"]>>_retinaParameters.IplMagno.parasolCells_tau;
|
|
currFn["parasolCells_k"]>>_retinaParameters.IplMagno.parasolCells_k;
|
|
currFn["amacrinCellsTemporalCutFrequency"]>>_retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
|
|
currFn["V0CompressionParameter"]>>_retinaParameters.IplMagno.V0CompressionParameter;
|
|
currFn["localAdaptintegration_tau"]>>_retinaParameters.IplMagno.localAdaptintegration_tau;
|
|
currFn["localAdaptintegration_k"]>>_retinaParameters.IplMagno.localAdaptintegration_k;
|
|
|
|
setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency,_retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);
|
|
|
|
}catch(Exception &e)
|
|
{
|
|
std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl;
|
|
if (applyDefaultSetupOnFailure)
|
|
{
|
|
setupOPLandIPLParvoChannel();
|
|
setupIPLMagnoChannel();
|
|
}
|
|
std::cout<<"Retina::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl;
|
|
std::cout<<"=> keeping current parameters"<<std::endl;
|
|
}
|
|
|
|
// report current configuration
|
|
std::cout<<printSetup()<<std::endl;
|
|
}
|
|
|
|
void Retina::setup(cv::Retina::RetinaParameters newConfiguration)
|
|
{
|
|
// simply copy structures
|
|
memcpy(&_retinaParameters, &newConfiguration, sizeof(cv::Retina::RetinaParameters));
|
|
// apply setup
|
|
setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity);
|
|
setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency,_retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k);
|
|
|
|
|
|
}
|
|
|
|
const std::string Retina::printSetup()
|
|
{
|
|
std::stringstream outmessage;
|
|
|
|
// displaying OPL and IPL parvo setup
|
|
outmessage<<"Current Retina instance setup :"
|
|
<<"\nOPLandIPLparvo"<<"{"
|
|
<< "\n==> colorMode : " << _retinaParameters.OPLandIplParvo.colorMode
|
|
<< "\n==> normalizeParvoOutput :" << _retinaParameters.OPLandIplParvo.normaliseOutput
|
|
<< "\n==> photoreceptorsLocalAdaptationSensitivity : " << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity
|
|
<< "\n==> photoreceptorsTemporalConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant
|
|
<< "\n==> photoreceptorsSpatialConstant : " << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant
|
|
<< "\n==> horizontalCellsGain : " << _retinaParameters.OPLandIplParvo.horizontalCellsGain
|
|
<< "\n==> hcellsTemporalConstant : " << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant
|
|
<< "\n==> hcellsSpatialConstant : " << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant
|
|
<< "\n==> parvoGanglionCellsSensitivity : " << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity
|
|
<<"}\n";
|
|
|
|
// displaying IPL magno setup
|
|
outmessage<<"Current Retina instance setup :"
|
|
<<"\nIPLmagno"<<"{"
|
|
<< "\n==> normaliseOutput : " << _retinaParameters.IplMagno.normaliseOutput
|
|
<< "\n==> parasolCells_beta : " << _retinaParameters.IplMagno.parasolCells_beta
|
|
<< "\n==> parasolCells_tau : " << _retinaParameters.IplMagno.parasolCells_tau
|
|
<< "\n==> parasolCells_k : " << _retinaParameters.IplMagno.parasolCells_k
|
|
<< "\n==> amacrinCellsTemporalCutFrequency : " << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency
|
|
<< "\n==> V0CompressionParameter : " << _retinaParameters.IplMagno.V0CompressionParameter
|
|
<< "\n==> localAdaptintegration_tau : " << _retinaParameters.IplMagno.localAdaptintegration_tau
|
|
<< "\n==> localAdaptintegration_k : " << _retinaParameters.IplMagno.localAdaptintegration_k
|
|
<<"}";
|
|
return outmessage.str();
|
|
}
|
|
|
|
void Retina::write( std::string fs ) const
|
|
{
|
|
FileStorage parametersSaveFile(fs, cv::FileStorage::WRITE );
|
|
write(parametersSaveFile);
|
|
}
|
|
|
|
void Retina::write( FileStorage& fs ) const
|
|
{
|
|
if (!fs.isOpened())
|
|
return; // basic error case
|
|
fs<<"OPLandIPLparvo"<<"{";
|
|
fs << "colorMode" << _retinaParameters.OPLandIplParvo.colorMode;
|
|
fs << "normaliseOutput" << _retinaParameters.OPLandIplParvo.normaliseOutput;
|
|
fs << "photoreceptorsLocalAdaptationSensitivity" << _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity;
|
|
fs << "photoreceptorsTemporalConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant;
|
|
fs << "photoreceptorsSpatialConstant" << _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant;
|
|
fs << "horizontalCellsGain" << _retinaParameters.OPLandIplParvo.horizontalCellsGain;
|
|
fs << "hcellsTemporalConstant" << _retinaParameters.OPLandIplParvo.hcellsTemporalConstant;
|
|
fs << "hcellsSpatialConstant" << _retinaParameters.OPLandIplParvo.hcellsSpatialConstant;
|
|
fs << "ganglionCellsSensitivity" << _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity;
|
|
fs << "}";
|
|
fs<<"IPLmagno"<<"{";
|
|
fs << "normaliseOutput" << _retinaParameters.IplMagno.normaliseOutput;
|
|
fs << "parasolCells_beta" << _retinaParameters.IplMagno.parasolCells_beta;
|
|
fs << "parasolCells_tau" << _retinaParameters.IplMagno.parasolCells_tau;
|
|
fs << "parasolCells_k" << _retinaParameters.IplMagno.parasolCells_k;
|
|
fs << "amacrinCellsTemporalCutFrequency" << _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency;
|
|
fs << "V0CompressionParameter" << _retinaParameters.IplMagno.V0CompressionParameter;
|
|
fs << "localAdaptintegration_tau" << _retinaParameters.IplMagno.localAdaptintegration_tau;
|
|
fs << "localAdaptintegration_k" << _retinaParameters.IplMagno.localAdaptintegration_k;
|
|
fs<<"}";
|
|
}
|
|
|
|
void Retina::setupOPLandIPLParvoChannel(const bool colorMode, const bool normaliseOutput, const float photoreceptorsLocalAdaptationSensitivity, const float photoreceptorsTemporalConstant, const float photoreceptorsSpatialConstant, const float horizontalCellsGain, const float HcellsTemporalConstant, const float HcellsSpatialConstant, const float ganglionCellsSensitivity)
|
|
{
|
|
// retina core parameters setup
|
|
_retinaFilter->setColorMode(colorMode);
|
|
_retinaFilter->setPhotoreceptorsLocalAdaptationSensitivity(photoreceptorsLocalAdaptationSensitivity);
|
|
_retinaFilter->setOPLandParvoParameters(0, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity);
|
|
_retinaFilter->setParvoGanglionCellsLocalAdaptationSensitivity(ganglionCellsSensitivity);
|
|
_retinaFilter->activateNormalizeParvoOutput_0_maxOutputValue(normaliseOutput);
|
|
|
|
// update parameters struture
|
|
|
|
_retinaParameters.OPLandIplParvo.colorMode = colorMode;
|
|
_retinaParameters.OPLandIplParvo.normaliseOutput = normaliseOutput;
|
|
_retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity = photoreceptorsLocalAdaptationSensitivity;
|
|
_retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant = photoreceptorsTemporalConstant;
|
|
_retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant = photoreceptorsSpatialConstant;
|
|
_retinaParameters.OPLandIplParvo.horizontalCellsGain = horizontalCellsGain;
|
|
_retinaParameters.OPLandIplParvo.hcellsTemporalConstant = HcellsTemporalConstant;
|
|
_retinaParameters.OPLandIplParvo.hcellsSpatialConstant = HcellsSpatialConstant;
|
|
_retinaParameters.OPLandIplParvo.ganglionCellsSensitivity = ganglionCellsSensitivity;
|
|
|
|
}
|
|
|
|
void Retina::setupIPLMagnoChannel(const bool normaliseOutput, const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
|
|
{
|
|
|
|
_retinaFilter->setMagnoCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
|
|
_retinaFilter->activateNormalizeMagnoOutput_0_maxOutputValue(normaliseOutput);
|
|
|
|
// update parameters struture
|
|
_retinaParameters.IplMagno.normaliseOutput = normaliseOutput;
|
|
_retinaParameters.IplMagno.parasolCells_beta = parasolCells_beta;
|
|
_retinaParameters.IplMagno.parasolCells_tau = parasolCells_tau;
|
|
_retinaParameters.IplMagno.parasolCells_k = parasolCells_k;
|
|
_retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency = amacrinCellsTemporalCutFrequency;
|
|
_retinaParameters.IplMagno.V0CompressionParameter = V0CompressionParameter;
|
|
_retinaParameters.IplMagno.localAdaptintegration_tau = localAdaptintegration_tau;
|
|
_retinaParameters.IplMagno.localAdaptintegration_k = localAdaptintegration_k;
|
|
}
|
|
|
|
void Retina::run(const cv::Mat &inputMatToConvert)
|
|
{
|
|
// first convert input image to the compatible format : std::valarray<float>
|
|
const bool colorMode = _convertCvMat2ValarrayBuffer(inputMatToConvert, _inputBuffer);
|
|
// process the retina
|
|
if (!_retinaFilter->runFilter(_inputBuffer, colorMode, false, colorMode, false))
|
|
throw cv::Exception(-1, "Retina cannot be applied, wrong input buffer size", "Retina::run", "Retina.h", 0);
|
|
}
|
|
|
|
void Retina::getParvo(cv::Mat &retinaOutput_parvo)
|
|
{
|
|
if (_retinaFilter->getColorMode())
|
|
{
|
|
// reallocate output buffer (if necessary)
|
|
_convertValarrayBuffer2cvMat(_retinaFilter->getColorOutput(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), true, retinaOutput_parvo);
|
|
}else
|
|
{
|
|
// reallocate output buffer (if necessary)
|
|
_convertValarrayBuffer2cvMat(_retinaFilter->getContours(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, retinaOutput_parvo);
|
|
}
|
|
//retinaOutput_parvo/=255.0;
|
|
}
|
|
void Retina::getMagno(cv::Mat &retinaOutput_magno)
|
|
{
|
|
// reallocate output buffer (if necessary)
|
|
_convertValarrayBuffer2cvMat(_retinaFilter->getMovingContours(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, retinaOutput_magno);
|
|
//retinaOutput_magno/=255.0;
|
|
}
|
|
|
|
// original API level data accessors
|
|
void Retina::getMagno(std::valarray<float> &){_retinaFilter->getMovingContours();}
|
|
void Retina::getParvo(std::valarray<float> &){_retinaFilter->getContours();}
|
|
|
|
// private method called by constructirs
|
|
void Retina::_init(const cv::Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
|
|
{
|
|
// basic error check
|
|
if (inputSize.height*inputSize.width <= 0)
|
|
throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "Retina::setup", "Retina.h", 0);
|
|
|
|
unsigned int nbPixels=inputSize.height*inputSize.width;
|
|
// resize buffers if size does not match
|
|
_inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...)
|
|
|
|
// allocate the retina model
|
|
if (_retinaFilter)
|
|
delete _retinaFilter;
|
|
_retinaFilter = new RetinaFilter(inputSize.height, inputSize.width, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
|
|
|
|
// prepare the default parameter XML file with default setup
|
|
setup(_retinaParameters);
|
|
|
|
// init retina
|
|
_retinaFilter->clearAllBuffers();
|
|
|
|
// report current configuration
|
|
std::cout<<printSetup()<<std::endl;
|
|
}
|
|
|
|
void Retina::_convertValarrayBuffer2cvMat(const std::valarray<float> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, cv::Mat &outBuffer)
|
|
{
|
|
// fill output buffer with the valarray buffer
|
|
const float *valarrayPTR=get_data(grayMatrixToConvert);
|
|
if (!colorMode)
|
|
{
|
|
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8U);
|
|
for (unsigned int i=0;i<nbRows;++i)
|
|
{
|
|
for (unsigned int j=0;j<nbColumns;++j)
|
|
{
|
|
cv::Point2d pixel(j,i);
|
|
outBuffer.at<unsigned char>(pixel)=(unsigned char)*(valarrayPTR++);
|
|
}
|
|
}
|
|
}else
|
|
{
|
|
const unsigned int doubleNBpixels=_retinaFilter->getOutputNBpixels()*2;
|
|
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3);
|
|
for (unsigned int i=0;i<nbRows;++i)
|
|
{
|
|
for (unsigned int j=0;j<nbColumns;++j,++valarrayPTR)
|
|
{
|
|
cv::Point2d pixel(j,i);
|
|
cv::Vec3b pixelValues;
|
|
pixelValues[2]=(unsigned char)*(valarrayPTR);
|
|
pixelValues[1]=(unsigned char)*(valarrayPTR+_retinaFilter->getOutputNBpixels());
|
|
pixelValues[0]=(unsigned char)*(valarrayPTR+doubleNBpixels);
|
|
|
|
outBuffer.at<cv::Vec3b>(pixel)=pixelValues;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const bool Retina::_convertCvMat2ValarrayBuffer(const cv::Mat inputMatToConvert, std::valarray<float> &outputValarrayMatrix)
|
|
{
|
|
// first check input consistency
|
|
if (inputMatToConvert.empty())
|
|
throw cv::Exception(-1, "Retina cannot be applied, input buffer is empty", "Retina::run", "Retina.h", 0);
|
|
|
|
// retreive color mode from image input
|
|
int imageNumberOfChannels = inputMatToConvert.channels();
|
|
|
|
// convert to float AND fill the valarray buffer
|
|
typedef float T; // define here the target pixel format, here, float
|
|
const int dsttype = DataType<T>::depth; // output buffer is float format
|
|
|
|
|
|
if(imageNumberOfChannels==4)
|
|
{
|
|
// create a cv::Mat table (for RGBA planes)
|
|
cv::Mat planes[] =
|
|
{
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype) // last channel (alpha) does not point on the valarray (not usefull in our case)
|
|
};
|
|
// split color cv::Mat in 4 planes... it fills valarray directely
|
|
cv::split(cv::Mat_<Vec<T, 4> >(inputMatToConvert), planes);
|
|
}else if (imageNumberOfChannels==3)
|
|
{
|
|
// create a cv::Mat table (for RGB planes)
|
|
cv::Mat planes[] =
|
|
{
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0])
|
|
};
|
|
// split color cv::Mat in 3 planes... it fills valarray directely
|
|
cv::split(cv::Mat_<Vec<T, 3> >(inputMatToConvert), planes);
|
|
}else if(imageNumberOfChannels==1)
|
|
{
|
|
// create a cv::Mat header for the valarray
|
|
cv::Mat dst(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]);
|
|
inputMatToConvert.convertTo(dst, dsttype);
|
|
}
|
|
else
|
|
CV_Error(CV_StsUnsupportedFormat, "input image must be single channel (gray levels), bgr format (color) or bgra (color with transparency which won't be considered");
|
|
|
|
return imageNumberOfChannels>1; // return bool : false for gray level image processing, true for color mode
|
|
}
|
|
|
|
void Retina::clearBuffers() {_retinaFilter->clearAllBuffers();}
|
|
|
|
void Retina::activateMovingContoursProcessing(const bool activate){_retinaFilter->activateMovingContoursProcessing(activate);}
|
|
|
|
void Retina::activateContoursProcessing(const bool activate){_retinaFilter->activateContoursProcessing(activate);}
|
|
|
|
} // end of namespace cv
|
|
|