mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 06:53:50 +08:00
695e33b25b
Added a writeFormat() method to Algorithm which must be called by the write() method of derived classes.
319 lines
12 KiB
C++
319 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_CUDAFILTERS)
|
|
|
|
Ptr<cuda::HoughCirclesDetector> cv::cuda::createHoughCirclesDetector(float, float, int, int, int, int, int) { throw_no_cuda(); return Ptr<HoughCirclesDetector>(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
{
|
|
namespace hough
|
|
{
|
|
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
|
|
}
|
|
|
|
namespace hough_circles
|
|
{
|
|
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp);
|
|
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold);
|
|
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
|
|
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
|
|
}
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
class HoughCirclesDetectorImpl : public HoughCirclesDetector
|
|
{
|
|
public:
|
|
HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles);
|
|
|
|
void detect(InputArray src, OutputArray circles, Stream& stream);
|
|
|
|
void setDp(float dp) { dp_ = dp; }
|
|
float getDp() const { return dp_; }
|
|
|
|
void setMinDist(float minDist) { minDist_ = minDist; }
|
|
float getMinDist() const { return minDist_; }
|
|
|
|
void setCannyThreshold(int cannyThreshold) { cannyThreshold_ = cannyThreshold; }
|
|
int getCannyThreshold() const { return cannyThreshold_; }
|
|
|
|
void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
|
|
int getVotesThreshold() const { return votesThreshold_; }
|
|
|
|
void setMinRadius(int minRadius) { minRadius_ = minRadius; }
|
|
int getMinRadius() const { return minRadius_; }
|
|
|
|
void setMaxRadius(int maxRadius) { maxRadius_ = maxRadius; }
|
|
int getMaxRadius() const { return maxRadius_; }
|
|
|
|
void setMaxCircles(int maxCircles) { maxCircles_ = maxCircles; }
|
|
int getMaxCircles() const { return maxCircles_; }
|
|
|
|
void write(FileStorage& fs) const
|
|
{
|
|
writeFormat(fs);
|
|
fs << "name" << "HoughCirclesDetector_CUDA"
|
|
<< "dp" << dp_
|
|
<< "minDist" << minDist_
|
|
<< "cannyThreshold" << cannyThreshold_
|
|
<< "votesThreshold" << votesThreshold_
|
|
<< "minRadius" << minRadius_
|
|
<< "maxRadius" << maxRadius_
|
|
<< "maxCircles" << maxCircles_;
|
|
}
|
|
|
|
void read(const FileNode& fn)
|
|
{
|
|
CV_Assert( String(fn["name"]) == "HoughCirclesDetector_CUDA" );
|
|
dp_ = (float)fn["dp"];
|
|
minDist_ = (float)fn["minDist"];
|
|
cannyThreshold_ = (int)fn["cannyThreshold"];
|
|
votesThreshold_ = (int)fn["votesThreshold"];
|
|
minRadius_ = (int)fn["minRadius"];
|
|
maxRadius_ = (int)fn["maxRadius"];
|
|
maxCircles_ = (int)fn["maxCircles"];
|
|
}
|
|
|
|
private:
|
|
float dp_;
|
|
float minDist_;
|
|
int cannyThreshold_;
|
|
int votesThreshold_;
|
|
int minRadius_;
|
|
int maxRadius_;
|
|
int maxCircles_;
|
|
|
|
GpuMat dx_, dy_;
|
|
GpuMat edges_;
|
|
GpuMat accum_;
|
|
Mat tt; //CPU copy of accum_
|
|
GpuMat list_;
|
|
GpuMat result_;
|
|
Ptr<cuda::Filter> filterDx_;
|
|
Ptr<cuda::Filter> filterDy_;
|
|
Ptr<cuda::CannyEdgeDetector> canny_;
|
|
};
|
|
|
|
bool centersCompare(Vec3f a, Vec3f b) {return (a[2] > b[2]);}
|
|
|
|
HoughCirclesDetectorImpl::HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold,
|
|
int minRadius, int maxRadius, int maxCircles) :
|
|
dp_(dp), minDist_(minDist), cannyThreshold_(cannyThreshold), votesThreshold_(votesThreshold),
|
|
minRadius_(minRadius), maxRadius_(maxRadius), maxCircles_(maxCircles)
|
|
{
|
|
canny_ = cuda::createCannyEdgeDetector(std::max(cannyThreshold_ / 2, 1), cannyThreshold_);
|
|
|
|
filterDx_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
|
|
filterDy_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
|
|
}
|
|
|
|
void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles, Stream& stream)
|
|
{
|
|
// TODO : implement async version
|
|
(void) stream;
|
|
|
|
using namespace cv::cuda::device::hough;
|
|
using namespace cv::cuda::device::hough_circles;
|
|
|
|
GpuMat src = _src.getGpuMat();
|
|
|
|
CV_Assert( src.type() == CV_8UC1 );
|
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
|
CV_Assert( dp_ > 0 );
|
|
CV_Assert( minRadius_ > 0 && maxRadius_ > minRadius_ );
|
|
CV_Assert( cannyThreshold_ > 0 );
|
|
CV_Assert( votesThreshold_ > 0 );
|
|
CV_Assert( maxCircles_ > 0 );
|
|
|
|
const float idp = 1.0f / dp_;
|
|
|
|
filterDx_->apply(src, dx_);
|
|
filterDy_->apply(src, dy_);
|
|
|
|
canny_->setLowThreshold(std::max(cannyThreshold_ / 2, 1));
|
|
canny_->setHighThreshold(cannyThreshold_);
|
|
|
|
canny_->detect(dx_, dy_, edges_);
|
|
|
|
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, list_);
|
|
unsigned int* srcPoints = list_.ptr<unsigned int>(0);
|
|
unsigned int* centers = list_.ptr<unsigned int>(1);
|
|
|
|
const int pointsCount = buildPointList_gpu(edges_, srcPoints);
|
|
if (pointsCount == 0)
|
|
{
|
|
circles.release();
|
|
return;
|
|
}
|
|
|
|
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, accum_);
|
|
accum_.setTo(Scalar::all(0));
|
|
|
|
circlesAccumCenters_gpu(srcPoints, pointsCount, dx_, dy_, accum_, minRadius_, maxRadius_, idp);
|
|
|
|
accum_.download(tt);
|
|
|
|
int centersCount = buildCentersList_gpu(accum_, centers, votesThreshold_);
|
|
if (centersCount == 0)
|
|
{
|
|
circles.release();
|
|
return;
|
|
}
|
|
|
|
if (minDist_ > 1)
|
|
{
|
|
AutoBuffer<ushort2> oldBuf_(centersCount);
|
|
AutoBuffer<ushort2> newBuf_(centersCount);
|
|
int newCount = 0;
|
|
|
|
ushort2* oldBuf = oldBuf_;
|
|
ushort2* newBuf = newBuf_;
|
|
|
|
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
|
|
|
|
const int cellSize = cvRound(minDist_);
|
|
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
|
|
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
|
|
|
|
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
|
|
|
|
const float minDist2 = minDist_ * minDist_;
|
|
|
|
std::vector<Vec3f> sortBuf;
|
|
for(int i=0; i<centersCount; i++){
|
|
Vec3f temp;
|
|
temp[0] = oldBuf[i].x;
|
|
temp[1] = oldBuf[i].y;
|
|
temp[2] = tt.at<int>(temp[1]+1, temp[0]+1);
|
|
sortBuf.push_back(temp);
|
|
}
|
|
std::sort(sortBuf.begin(), sortBuf.end(), centersCompare);
|
|
|
|
for (int i = 0; i < centersCount; ++i)
|
|
{
|
|
ushort2 p;
|
|
p.x = sortBuf[i][0];
|
|
p.y = sortBuf[i][1];
|
|
|
|
bool good = true;
|
|
|
|
int xCell = static_cast<int>(p.x / cellSize);
|
|
int yCell = static_cast<int>(p.y / cellSize);
|
|
|
|
int x1 = xCell - 1;
|
|
int y1 = yCell - 1;
|
|
int x2 = xCell + 1;
|
|
int y2 = yCell + 1;
|
|
|
|
// boundary check
|
|
x1 = std::max(0, x1);
|
|
y1 = std::max(0, y1);
|
|
x2 = std::min(gridWidth - 1, x2);
|
|
y2 = std::min(gridHeight - 1, y2);
|
|
|
|
for (int yy = y1; yy <= y2; ++yy)
|
|
{
|
|
for (int xx = x1; xx <= x2; ++xx)
|
|
{
|
|
std::vector<ushort2>& m = grid[yy * gridWidth + xx];
|
|
|
|
for(size_t j = 0; j < m.size(); ++j)
|
|
{
|
|
float dx = (float)(p.x - m[j].x);
|
|
float dy = (float)(p.y - m[j].y);
|
|
|
|
if (dx * dx + dy * dy < minDist2)
|
|
{
|
|
good = false;
|
|
goto break_out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
break_out:
|
|
|
|
if(good)
|
|
{
|
|
grid[yCell * gridWidth + xCell].push_back(p);
|
|
|
|
newBuf[newCount++] = p;
|
|
}
|
|
}
|
|
|
|
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
|
|
centersCount = newCount;
|
|
}
|
|
|
|
ensureSizeIsEnough(1, maxCircles_, CV_32FC3, result_);
|
|
|
|
int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, result_.ptr<float3>(), maxCircles_,
|
|
dp_, minRadius_, maxRadius_, votesThreshold_, deviceSupports(FEATURE_SET_COMPUTE_20));
|
|
|
|
if (circlesCount == 0)
|
|
{
|
|
circles.release();
|
|
return;
|
|
}
|
|
|
|
result_.cols = circlesCount;
|
|
result_.copyTo(circles);
|
|
}
|
|
}
|
|
|
|
Ptr<HoughCirclesDetector> cv::cuda::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
|
{
|
|
return makePtr<HoughCirclesDetectorImpl>(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|