opencv/modules/features2d/src/kaze/nldiffusion_functions.cpp
2014-04-04 14:25:38 +03:00

387 lines
14 KiB
C++

//=============================================================================
//
// nldiffusion_functions.cpp
// Author: Pablo F. Alcantarilla
// Institution: University d'Auvergne
// Address: Clermont Ferrand, France
// Date: 27/12/2011
// Email: pablofdezalc@gmail.com
//
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
// All Rights Reserved
// See LICENSE for the license information
//=============================================================================
/**
* @file nldiffusion_functions.cpp
* @brief Functions for non-linear diffusion applications:
* 2D Gaussian Derivatives
* Perona and Malik conductivity equations
* Perona and Malik evolution
* @date Dec 27, 2011
* @author Pablo F. Alcantarilla
*/
#include "nldiffusion_functions.h"
// Namespaces
using namespace std;
using namespace cv;
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function smoothes an image with a Gaussian kernel
* @param src Input image
* @param dst Output image
* @param ksize_x Kernel size in X-direction (horizontal)
* @param ksize_y Kernel size in Y-direction (vertical)
* @param sigma Kernel standard deviation
*/
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
int ksize_x, int ksize_y, float sigma) {
size_t ksize_x_ = 0, ksize_y_ = 0;
// Compute an appropriate kernel size according to the specified sigma
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
ksize_x_ = ceil(2.0*(1.0 + (sigma-0.8)/(0.3)));
ksize_y_ = ksize_x_;
}
// The kernel size must be and odd number
if ((ksize_x_ % 2) == 0) {
ksize_x_ += 1;
}
if ((ksize_y_ % 2) == 0) {
ksize_y_ += 1;
}
// Perform the Gaussian Smoothing with border replication
GaussianBlur(src,dst,Size(ksize_x_,ksize_y_),sigma,sigma,cv::BORDER_REPLICATE);
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function computes the Perona and Malik conductivity coefficient g1
* g1 = exp(-|dL|^2/k^2)
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
*/
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly))/(k*k),dst);
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function computes the Perona and Malik conductivity coefficient g2
* g2 = 1 / (1 + dL^2 / k^2)
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
*/
void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
dst = 1./(1. + (Lx.mul(Lx) + Ly.mul(Ly))/(k*k));
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function computes Weickert conductivity coefficient g3
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
* @note For more information check the following paper: J. Weickert
* Applications of nonlinear diffusion in image processing and computer vision,
* Proceedings of Algorithmy 2000
*/
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
Mat modg;
cv::pow((Lx.mul(Lx) + Ly.mul(Ly))/(k*k),4,modg);
cv::exp(-3.315/modg, dst);
dst = 1.0 - dst;
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function computes a good empirical value for the k contrast factor
* given an input image, the percentile (0-1), the gradient scale and the number of
* bins in the histogram
* @param img Input image
* @param perc Percentile of the image gradient histogram (0-1)
* @param gscale Scale for computing the image gradient histogram
* @param nbins Number of histogram bins
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
* @return k contrast factor
*/
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
int nbins, int ksize_x, int ksize_y) {
int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
float npoints = 0.0;
float hmax = 0.0;
// Create the array for the histogram
float *hist = new float[nbins];
// Create the matrices
Mat gaussian = Mat::zeros(img.rows,img.cols,CV_32F);
Mat Lx = Mat::zeros(img.rows,img.cols,CV_32F);
Mat Ly = Mat::zeros(img.rows,img.cols,CV_32F);
// Set the histogram to zero, just in case
for (int i = 0; i < nbins; i++) {
hist[i] = 0.0;
}
// Perform the Gaussian convolution
gaussian_2D_convolution(img,gaussian,ksize_x,ksize_y,gscale);
// Compute the Gaussian derivatives Lx and Ly
Scharr(gaussian,Lx,CV_32F,1,0,1,0,cv::BORDER_DEFAULT);
Scharr(gaussian,Ly,CV_32F,0,1,1,0,cv::BORDER_DEFAULT);
// Skip the borders for computing the histogram
for (int i = 1; i < gaussian.rows-1; i++) {
for (int j = 1; j < gaussian.cols-1; j++) {
lx = *(Lx.ptr<float>(i)+j);
ly = *(Ly.ptr<float>(i)+j);
modg = sqrt(lx*lx + ly*ly);
// Get the maximum
if (modg > hmax) {
hmax = modg;
}
}
}
// Skip the borders for computing the histogram
for (int i = 1; i < gaussian.rows-1; i++) {
for (int j = 1; j < gaussian.cols-1; j++) {
lx = *(Lx.ptr<float>(i)+j);
ly = *(Ly.ptr<float>(i)+j);
modg = sqrt(lx*lx + ly*ly);
// Find the correspondent bin
if (modg != 0.0) {
nbin = floor(nbins*(modg/hmax));
if (nbin == nbins) {
nbin--;
}
hist[nbin]++;
npoints++;
}
}
}
// Now find the perc of the histogram percentile
nthreshold = (size_t)(npoints*perc);
for (k = 0; nelements < nthreshold && k < nbins; k++) {
nelements = nelements + hist[k];
}
if (nelements < nthreshold) {
kperc = 0.03;
}
else {
kperc = hmax*((float)(k)/(float)nbins);
}
delete hist;
return kperc;
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function computes Scharr image derivatives
* @param src Input image
* @param dst Output image
* @param xorder Derivative order in X-direction (horizontal)
* @param yorder Derivative order in Y-direction (vertical)
* @param scale Scale factor or derivative size
*/
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst,
int xorder, int yorder, int scale) {
Mat kx, ky;
compute_derivative_kernels(kx,ky,xorder,yorder,scale);
sepFilter2D(src,dst,CV_32F,kx,ky);
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief Compute derivative kernels for sizes different than 3
* @param _kx Horizontal kernel values
* @param _ky Vertical kernel values
* @param dx Derivative order in X-direction (horizontal)
* @param dy Derivative order in Y-direction (vertical)
* @param scale_ Scale factor or derivative size
*/
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky,
int dx, int dy, int scale) {
int ksize = 3 + 2*(scale-1);
// The standard Scharr kernel
if (scale == 1) {
getDerivKernels(_kx,_ky,dx,dy,0,true,CV_32F);
return;
}
_kx.create(ksize,1,CV_32F,-1,true);
_ky.create(ksize,1,CV_32F,-1,true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
float w = 10.0/3.0;
float norm = 1.0/(2.0*scale*(w+2.0));
for (int k = 0; k < 2; k++) {
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
std::vector<float> kerI(ksize);
for (int t=0; t<ksize; t++) {
kerI[t] = 0;
}
if (order == 0) {
kerI[0] = norm, kerI[ksize/2] = w*norm, kerI[ksize-1] = norm;
}
else if (order == 1) {
kerI[0] = -1, kerI[ksize/2] = 0, kerI[ksize-1] = 1;
}
Mat temp(kernel->rows,kernel->cols,CV_32F,&kerI[0]);
temp.copyTo(*kernel);
}
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function performs a scalar non-linear diffusion step
* @param Ld2 Output image in the evolution
* @param c Conductivity image
* @param Lstep Previous image in the evolution
* @param stepsize The step size in time units
* @note Forward Euler Scheme 3x3 stencil
* The function c is a scalar value that depends on the gradient norm
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
*/
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic)
#endif
for (int i = 1; i < Lstep.rows-1; i++) {
for (int j = 1; j < Lstep.cols-1; j++) {
float xpos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i)+j+1)))*((*(Ld.ptr<float>(i)+j+1))-(*(Ld.ptr<float>(i)+j)));
float xneg = ((*(c.ptr<float>(i)+j-1))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i)+j-1)));
float ypos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i+1)+j)))*((*(Ld.ptr<float>(i+1)+j))-(*(Ld.ptr<float>(i)+j)));
float yneg = ((*(c.ptr<float>(i-1)+j))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i-1)+j)));
*(Lstep.ptr<float>(i)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg);
}
}
for (int j = 1; j < Lstep.cols-1; j++) {
float xpos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j+1)))*((*(Ld.ptr<float>(0)+j+1))-(*(Ld.ptr<float>(0)+j)));
float xneg = ((*(c.ptr<float>(0)+j-1))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j-1)));
float ypos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(1)+j)))*((*(Ld.ptr<float>(1)+j))-(*(Ld.ptr<float>(0)+j)));
float yneg = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j)));
*(Lstep.ptr<float>(0)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg);
}
for (int j = 1; j < Lstep.cols-1; j++) {
float xpos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j+1)))*((*(Ld.ptr<float>(Lstep.rows-1)+j+1))-(*(Ld.ptr<float>(Lstep.rows-1)+j)));
float xneg = ((*(c.ptr<float>(Lstep.rows-1)+j-1))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j-1)));
float ypos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j)));
float yneg = ((*(c.ptr<float>(Lstep.rows-2)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-2)+j)));
*(Lstep.ptr<float>(Lstep.rows-1)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg);
}
for (int i = 1; i < Lstep.rows-1; i++) {
float xpos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1))-(*(Ld.ptr<float>(i))));
float xneg = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i))));
float ypos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i+1))))*((*(Ld.ptr<float>(i+1)))-(*(Ld.ptr<float>(i))));
float yneg = ((*(c.ptr<float>(i-1)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i-1))));
*(Lstep.ptr<float>(i)) = 0.5*stepsize*(xpos-xneg + ypos-yneg);
}
for (int i = 1; i < Lstep.rows-1; i++) {
float xpos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1)));
float xneg = ((*(c.ptr<float>(i)+Lstep.cols-2))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-2)));
float ypos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i+1)+Lstep.cols-1)))*((*(Ld.ptr<float>(i+1)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1)));
float yneg = ((*(c.ptr<float>(i-1)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i-1)+Lstep.cols-1)));
*(Lstep.ptr<float>(i)+Lstep.cols-1) = 0.5*stepsize*(xpos-xneg + ypos-yneg);
}
Ld = Ld + Lstep;
}
//*************************************************************************************
//*************************************************************************************
/**
* @brief This function checks if a given pixel is a maximum in a local neighbourhood
* @param img Input image where we will perform the maximum search
* @param dsize Half size of the neighbourhood
* @param value Response value at (x,y) position
* @param row Image row coordinate
* @param col Image column coordinate
* @param same_img Flag to indicate if the image value at (x,y) is in the input image
* @return 1->is maximum, 0->otherwise
*/
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
int row, int col, bool same_img) {
bool response = true;
for (int i = row-dsize; i <= row+dsize; i++) {
for (int j = col-dsize; j <= col+dsize; j++) {
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) {
if (same_img == true) {
if (i != row || j != col) {
if ((*(img.ptr<float>(i)+j)) > value) {
response = false;
return response;
}
}
}
else {
if ((*(img.ptr<float>(i)+j)) > value) {
response = false;
return response;
}
}
}
}
}
return response;
}