mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 14:29:49 +08:00
230 lines
8.9 KiB
ReStructuredText
230 lines
8.9 KiB
ReStructuredText
Video Analysis
|
|
==============
|
|
|
|
.. highlight:: cpp
|
|
|
|
|
|
gpu::BroxOpticalFlow
|
|
--------------------
|
|
.. ocv:class:: gpu::BroxOpticalFlow
|
|
|
|
Class computing the optical flow for two images using Brox et al Optical Flow algorithm ([Brox2004]_). ::
|
|
|
|
class BroxOpticalFlow
|
|
{
|
|
public:
|
|
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_);
|
|
|
|
//! Compute optical flow
|
|
//! frame0 - source frame (supports only CV_32FC1 type)
|
|
//! frame1 - frame to track (with the same size and type as frame0)
|
|
//! u - flow horizontal component (along x axis)
|
|
//! v - flow vertical component (along y axis)
|
|
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
|
|
|
|
//! flow smoothness
|
|
float alpha;
|
|
|
|
//! gradient constancy importance
|
|
float gamma;
|
|
|
|
//! pyramid scale factor
|
|
float scale_factor;
|
|
|
|
//! number of lagged non-linearity iterations (inner loop)
|
|
int inner_iterations;
|
|
|
|
//! number of warping iterations (number of pyramid levels)
|
|
int outer_iterations;
|
|
|
|
//! number of linear system solver iterations
|
|
int solver_iterations;
|
|
|
|
GpuMat buf;
|
|
};
|
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU
|
|
------------------------------------
|
|
|
|
Class used for strong corners detection on an image. ::
|
|
|
|
class GoodFeaturesToTrackDetector_GPU
|
|
{
|
|
public:
|
|
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners_ = 1000, double qualityLevel_ = 0.01, double minDistance_ = 0.0,
|
|
int blockSize_ = 3, bool useHarrisDetector_ = false, double harrisK_ = 0.04);
|
|
|
|
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());
|
|
|
|
int maxCorners;
|
|
double qualityLevel;
|
|
double minDistance;
|
|
|
|
int blockSize;
|
|
bool useHarrisDetector;
|
|
double harrisK;
|
|
|
|
void releaseMemory();
|
|
};
|
|
|
|
The class finds the most prominent corners in the image.
|
|
|
|
.. seealso:: :ocv:func:`goodFeaturesToTrack`
|
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU
|
|
---------------------------------------------------------------------
|
|
Constructor.
|
|
|
|
.. ocv:function:: gpu::GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04)
|
|
|
|
:param maxCorners: Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned.
|
|
|
|
:param qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see :ocv:func:`gpu::cornerMinEigenVal` ) or the Harris function response (see :ocv:func:`gpu::cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected.
|
|
|
|
:param minDistance: Minimum possible Euclidean distance between the returned corners.
|
|
|
|
:param blockSize: Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See :ocv:func:`cornerEigenValsAndVecs` .
|
|
|
|
:param useHarrisDetector: Parameter indicating whether to use a Harris detector (see :ocv:func:`gpu::cornerHarris`) or :ocv:func:`gpu::cornerMinEigenVal`.
|
|
|
|
:param harrisK: Free parameter of the Harris detector.
|
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU::operator ()
|
|
-------------------------------------------------
|
|
Finds the most prominent corners in the image.
|
|
|
|
.. ocv:function:: void gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat())
|
|
|
|
:param image: Input 8-bit, single-channel image.
|
|
|
|
:param corners: Output vector of detected corners (it will be one row matrix with CV_32FC2 type).
|
|
|
|
:param mask: Optional region of interest. If the image is not empty (it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it specifies the region in which the corners are detected.
|
|
|
|
.. seealso:: :ocv:func:`goodFeaturesToTrack`
|
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU::releaseMemory
|
|
---------------------------------------------------
|
|
Releases inner buffers memory.
|
|
|
|
.. ocv:function:: void gpu::GoodFeaturesToTrackDetector_GPU::releaseMemory()
|
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow
|
|
---------------------
|
|
|
|
Class used for calculating an optical flow. ::
|
|
|
|
class PyrLKOpticalFlow
|
|
{
|
|
public:
|
|
PyrLKOpticalFlow();
|
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
|
|
GpuMat& status, GpuMat* err = 0);
|
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
|
|
|
|
Size winSize;
|
|
int maxLevel;
|
|
int iters;
|
|
double derivLambda;
|
|
bool useInitialFlow;
|
|
float minEigThreshold;
|
|
|
|
void releaseMemory();
|
|
};
|
|
|
|
The class can calculate an optical flow for a sparse feature set or dense optical flow using the iterative Lucas-Kanade method with pyramids.
|
|
|
|
.. seealso:: :ocv:func:`calcOpticalFlowPyrLK`
|
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow::sparse
|
|
-----------------------------
|
|
Calculate an optical flow for a sparse feature set.
|
|
|
|
.. ocv:function:: void gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err = 0)
|
|
|
|
:param prevImg: First 8-bit input image (supports both grayscale and color images).
|
|
|
|
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
|
|
|
|
:param prevPts: Vector of 2D points for which the flow needs to be found. It must be one row matrix with CV_32FC2 type.
|
|
|
|
:param nextPts: Output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image. When ``useInitialFlow`` is true, the vector must have the same size as in the input.
|
|
|
|
:param status: Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0.
|
|
|
|
:param err: Output vector (CV_32FC1 type) that contains min eigen value. It can be NULL, if not needed.
|
|
|
|
.. seealso:: :ocv:func:`calcOpticalFlowPyrLK`
|
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow::dense
|
|
-----------------------------
|
|
Calculate dense optical flow.
|
|
|
|
.. ocv:function:: void gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0)
|
|
|
|
:param prevImg: First 8-bit grayscale input image.
|
|
|
|
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
|
|
|
|
:param u: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
|
|
|
|
:param v: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
|
|
|
|
:param err: Output vector (CV_32FC1 type) that contains min eigen value. It can be NULL, if not needed.
|
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow::releaseMemory
|
|
------------------------------------
|
|
Releases inner buffers memory.
|
|
|
|
.. ocv:function:: void gpu::PyrLKOpticalFlow::releaseMemory()
|
|
|
|
|
|
|
|
gpu::interpolateFrames
|
|
----------------------
|
|
Interpolate frames (images) using provided optical flow (displacement field).
|
|
|
|
.. ocv:function:: void gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, float pos, GpuMat& newFrame, GpuMat& buf, Stream& stream = Stream::Null())
|
|
|
|
:param frame0: First frame (32-bit floating point images, single channel).
|
|
|
|
:param frame1: Second frame. Must have the same type and size as ``frame0`` .
|
|
|
|
:param fu: Forward horizontal displacement.
|
|
|
|
:param fv: Forward vertical displacement.
|
|
|
|
:param bu: Backward horizontal displacement.
|
|
|
|
:param bv: Backward vertical displacement.
|
|
|
|
:param pos: New frame position.
|
|
|
|
:param newFrame: Output image.
|
|
|
|
:param buf: Temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow, interpolated backward vertical flow.
|
|
|
|
:param stream: Stream for the asynchronous version.
|
|
|
|
|
|
|
|
.. [Brox2004] T. Brox, A. Bruhn, N. Papenberg, J. Weickert. *High accuracy optical flow estimation based on a theory for warping*. ECCV 2004.
|