opencv/modules/core/src/matrix_c.cpp
2018-09-06 14:34:16 +03:00

388 lines
11 KiB
C++

#include "opencv2/core/mat.hpp"
#include "opencv2/core/types_c.h"
#include "precomp.hpp"
// glue
CvMatND cvMatND(const cv::Mat& m)
{
CvMatND self;
cvInitMatNDHeader(&self, m.dims, m.size, m.type(), m.data );
int i, d = m.dims;
for( i = 0; i < d; i++ )
self.dim[i].step = (int)m.step[i];
self.type |= m.flags & cv::Mat::CONTINUOUS_FLAG;
return self;
}
_IplImage cvIplImage(const cv::Mat& m)
{
_IplImage self;
CV_Assert( m.dims <= 2 );
cvInitImageHeader(&self, cvSize(m.size()), cvIplDepth(m.flags), m.channels());
cvSetData(&self, m.data, (int)m.step[0]);
return self;
}
namespace cv {
static Mat cvMatToMat(const CvMat* m, bool copyData)
{
Mat thiz;
if( !m )
return thiz;
if( !copyData )
{
thiz.flags = Mat::MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG));
thiz.dims = 2;
thiz.rows = m->rows;
thiz.cols = m->cols;
thiz.datastart = thiz.data = m->data.ptr;
size_t esz = CV_ELEM_SIZE(m->type), minstep = thiz.cols*esz, _step = m->step;
if( _step == 0 )
_step = minstep;
thiz.datalimit = thiz.datastart + _step*thiz.rows;
thiz.dataend = thiz.datalimit - _step + minstep;
thiz.step[0] = _step; thiz.step[1] = esz;
}
else
{
thiz.datastart = thiz.dataend = thiz.data = 0;
Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(thiz);
}
return thiz;
}
static Mat cvMatNDToMat(const CvMatND* m, bool copyData)
{
Mat thiz;
if( !m )
return thiz;
thiz.datastart = thiz.data = m->data.ptr;
thiz.flags |= CV_MAT_TYPE(m->type);
int _sizes[CV_MAX_DIM];
size_t _steps[CV_MAX_DIM];
int d = m->dims;
for( int i = 0; i < d; i++ )
{
_sizes[i] = m->dim[i].size;
_steps[i] = m->dim[i].step;
}
setSize(thiz, d, _sizes, _steps);
finalizeHdr(thiz);
if( copyData )
{
Mat temp(thiz);
thiz.release();
temp.copyTo(thiz);
}
return thiz;
}
static Mat iplImageToMat(const IplImage* img, bool copyData)
{
Mat m;
if( !img )
return m;
m.dims = 2;
CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0);
int imgdepth = IPL2CV_DEPTH(img->depth);
size_t esz;
m.step[0] = img->widthStep;
if(!img->roi)
{
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL);
m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, img->nChannels);
m.rows = img->height;
m.cols = img->width;
m.datastart = m.data = (uchar*)img->imageData;
esz = CV_ELEM_SIZE(m.flags);
}
else
{
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0);
bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE;
m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, selectedPlane ? 1 : img->nChannels);
m.rows = img->roi->height;
m.cols = img->roi->width;
esz = CV_ELEM_SIZE(m.flags);
m.datastart = m.data = (uchar*)img->imageData +
(selectedPlane ? (img->roi->coi - 1)*m.step*img->height : 0) +
img->roi->yOffset*m.step[0] + img->roi->xOffset*esz;
}
m.datalimit = m.datastart + m.step.p[0]*m.rows;
m.dataend = m.datastart + m.step.p[0]*(m.rows-1) + esz*m.cols;
m.step[1] = esz;
m.updateContinuityFlag();
if( copyData )
{
Mat m2 = m;
m.release();
if( !img->roi || !img->roi->coi ||
img->dataOrder == IPL_DATA_ORDER_PLANE)
m2.copyTo(m);
else
{
int ch[] = {img->roi->coi - 1, 0};
m.create(m2.rows, m2.cols, m2.type());
mixChannels(&m2, 1, &m, 1, ch, 1);
}
}
return m;
}
Mat cvarrToMat(const CvArr* arr, bool copyData,
bool /*allowND*/, int coiMode, AutoBuffer<double>* abuf )
{
if( !arr )
return Mat();
if( CV_IS_MAT_HDR_Z(arr) )
return cvMatToMat((const CvMat*)arr, copyData);
if( CV_IS_MATND(arr) )
return cvMatNDToMat((const CvMatND*)arr, copyData );
if( CV_IS_IMAGE(arr) )
{
const IplImage* iplimg = (const IplImage*)arr;
if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 )
CV_Error(CV_BadCOI, "COI is not supported by the function");
return iplImageToMat(iplimg, copyData);
}
if( CV_IS_SEQ(arr) )
{
CvSeq* seq = (CvSeq*)arr;
int total = seq->total, type = CV_MAT_TYPE(seq->flags), esz = seq->elem_size;
if( total == 0 )
return Mat();
CV_Assert(total > 0 && CV_ELEM_SIZE(seq->flags) == esz);
if(!copyData && seq->first->next == seq->first)
return Mat(total, 1, type, seq->first->data);
if( abuf )
{
abuf->allocate(((size_t)total*esz + sizeof(double)-1)/sizeof(double));
double* bufdata = abuf->data();
cvCvtSeqToArray(seq, bufdata, CV_WHOLE_SEQ);
return Mat(total, 1, type, bufdata);
}
Mat buf(total, 1, type);
cvCvtSeqToArray(seq, buf.ptr(), CV_WHOLE_SEQ);
return buf;
}
CV_Error(CV_StsBadArg, "Unknown array type");
}
void extractImageCOI(const CvArr* arr, OutputArray _ch, int coi)
{
Mat mat = cvarrToMat(arr, false, true, 1);
_ch.create(mat.dims, mat.size, mat.depth());
Mat ch = _ch.getMat();
if(coi < 0)
{
CV_Assert( CV_IS_IMAGE(arr) );
coi = cvGetImageCOI((const IplImage*)arr)-1;
}
CV_Assert(0 <= coi && coi < mat.channels());
int _pairs[] = { coi, 0 };
mixChannels( &mat, 1, &ch, 1, _pairs, 1 );
}
void insertImageCOI(InputArray _ch, CvArr* arr, int coi)
{
Mat ch = _ch.getMat(), mat = cvarrToMat(arr, false, true, 1);
if(coi < 0)
{
CV_Assert( CV_IS_IMAGE(arr) );
coi = cvGetImageCOI((const IplImage*)arr)-1;
}
CV_Assert(ch.size == mat.size && ch.depth() == mat.depth() && 0 <= coi && coi < mat.channels());
int _pairs[] = { 0, coi };
mixChannels( &ch, 1, &mat, 1, _pairs, 1 );
}
} // cv::
// operations
CV_IMPL void cvSetIdentity( CvArr* arr, CvScalar value )
{
cv::Mat m = cv::cvarrToMat(arr);
cv::setIdentity(m, value);
}
CV_IMPL CvScalar cvTrace( const CvArr* arr )
{
return cvScalar(cv::trace(cv::cvarrToMat(arr)));
}
CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.rows == dst.cols && src.cols == dst.rows && src.type() == dst.type() );
transpose( src, dst );
}
CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR )
{
cv::Mat m = cv::cvarrToMat(matrix);
cv::completeSymm( m, LtoR != 0 );
}
CV_IMPL void cvCrossProduct( const CvArr* srcAarr, const CvArr* srcBarr, CvArr* dstarr )
{
cv::Mat srcA = cv::cvarrToMat(srcAarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( srcA.size() == dst.size() && srcA.type() == dst.type() );
srcA.cross(cv::cvarrToMat(srcBarr)).copyTo(dst);
}
CV_IMPL void
cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
if( dim < 0 )
dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1;
if( dim > 1 )
CV_Error( CV_StsOutOfRange, "The reduced dimensionality index is out of range" );
if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) ||
(dim == 1 && (dst.rows != src.rows || dst.cols != 1)) )
CV_Error( CV_StsBadSize, "The output array size is incorrect" );
if( src.channels() != dst.channels() )
CV_Error( CV_StsUnmatchedFormats, "Input and output arrays must have the same number of channels" );
cv::reduce(src, dst, dim, op, dst.type());
}
CV_IMPL CvArr*
cvRange( CvArr* arr, double start, double end )
{
CvMat stub, *mat = (CvMat*)arr;
int step;
double val = start;
if( !CV_IS_MAT(mat) )
mat = cvGetMat( mat, &stub);
int rows = mat->rows;
int cols = mat->cols;
int type = CV_MAT_TYPE(mat->type);
double delta = (end-start)/(rows*cols);
if( CV_IS_MAT_CONT(mat->type) )
{
cols *= rows;
rows = 1;
step = 1;
}
else
step = mat->step / CV_ELEM_SIZE(type);
if( type == CV_32SC1 )
{
int* idata = mat->data.i;
int ival = cvRound(val), idelta = cvRound(delta);
if( fabs(val - ival) < DBL_EPSILON &&
fabs(delta - idelta) < DBL_EPSILON )
{
for( int i = 0; i < rows; i++, idata += step )
for( int j = 0; j < cols; j++, ival += idelta )
idata[j] = ival;
}
else
{
for( int i = 0; i < rows; i++, idata += step )
for( int j = 0; j < cols; j++, val += delta )
idata[j] = cvRound(val);
}
}
else if( type == CV_32FC1 )
{
float* fdata = mat->data.fl;
for( int i = 0; i < rows; i++, fdata += step )
for( int j = 0; j < cols; j++, val += delta )
fdata[j] = (float)val;
}
else
CV_Error( CV_StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" );
return arr;
}
CV_IMPL void
cvSort( const CvArr* _src, CvArr* _dst, CvArr* _idx, int flags )
{
cv::Mat src = cv::cvarrToMat(_src);
if( _idx )
{
cv::Mat idx0 = cv::cvarrToMat(_idx), idx = idx0;
CV_Assert( src.size() == idx.size() && idx.type() == CV_32S && src.data != idx.data );
cv::sortIdx( src, idx, flags );
CV_Assert( idx0.data == idx.data );
}
if( _dst )
{
cv::Mat dst0 = cv::cvarrToMat(_dst), dst = dst0;
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
cv::sort( src, dst, flags );
CV_Assert( dst0.data == dst.data );
}
}
CV_IMPL int
cvKMeans2( const CvArr* _samples, int cluster_count, CvArr* _labels,
CvTermCriteria termcrit, int attempts, CvRNG*,
int flags, CvArr* _centers, double* _compactness )
{
cv::Mat data = cv::cvarrToMat(_samples), labels = cv::cvarrToMat(_labels), centers;
if( _centers )
{
centers = cv::cvarrToMat(_centers);
centers = centers.reshape(1);
data = data.reshape(1);
CV_Assert( !centers.empty() );
CV_Assert( centers.rows == cluster_count );
CV_Assert( centers.cols == data.cols );
CV_Assert( centers.depth() == data.depth() );
}
CV_Assert( labels.isContinuous() && labels.type() == CV_32S &&
(labels.cols == 1 || labels.rows == 1) &&
labels.cols + labels.rows - 1 == data.rows );
double compactness = cv::kmeans(data, cluster_count, labels, termcrit, attempts,
flags, _centers ? cv::_OutputArray(centers) : cv::_OutputArray() );
if( _compactness )
*_compactness = compactness;
return 1;
}