mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 04:00:30 +08:00
55 lines
1.4 KiB
Python
Executable File
55 lines
1.4 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
# 2009-01-16, Xavier Delacour <xavier.delacour@gmail.com>
|
|
|
|
import unittest
|
|
from numpy import *;
|
|
from numpy.linalg import *;
|
|
import sys;
|
|
import cvtestutils
|
|
from cv import *;
|
|
from adaptors import *;
|
|
|
|
def planted_neighbors(query_points, R = .4):
|
|
n,d = query_points.shape
|
|
data = zeros(query_points.shape)
|
|
for i in range(0,n):
|
|
a = random.rand(d)
|
|
a = random.rand()*R*a/sqrt(sum(a**2))
|
|
data[i] = query_points[i] + a
|
|
return data
|
|
|
|
class feature_tree_test(unittest.TestCase):
|
|
|
|
def test_kdtree_basic(self):
|
|
n = 1000;
|
|
d = 64;
|
|
query_points = random.rand(n,d)*2-1;
|
|
data = planted_neighbors(query_points)
|
|
|
|
tr = cvCreateKDTree(data);
|
|
indices,dist = cvFindFeatures(tr, query_points, 1, 100);
|
|
|
|
correct = sum([i == j for j,i in enumerate(indices)])
|
|
assert(correct >= n * .75);
|
|
|
|
def test_spilltree_basic(self):
|
|
n = 1000;
|
|
d = 64;
|
|
query_points = random.rand(n,d)*2-1;
|
|
data = planted_neighbors(query_points)
|
|
|
|
tr = cvCreateSpillTree(data);
|
|
indices,dist = cvFindFeatures(tr, query_points, 1, 100);
|
|
|
|
correct = sum([i == j for j,i in enumerate(indices)])
|
|
assert(correct >= n * .75);
|
|
|
|
def suite():
|
|
return unittest.TestLoader().loadTestsFromTestCase(feature_tree_test)
|
|
|
|
if __name__ == '__main__':
|
|
suite = suite()
|
|
unittest.TextTestRunner(verbosity=2).run(suite)
|
|
|