opencv/tests/swig_python/feature_tree_tests.py

55 lines
1.4 KiB
Python
Executable File

#!/usr/bin/env python
# 2009-01-16, Xavier Delacour <xavier.delacour@gmail.com>
import unittest
from numpy import *;
from numpy.linalg import *;
import sys;
import cvtestutils
from cv import *;
from adaptors import *;
def planted_neighbors(query_points, R = .4):
n,d = query_points.shape
data = zeros(query_points.shape)
for i in range(0,n):
a = random.rand(d)
a = random.rand()*R*a/sqrt(sum(a**2))
data[i] = query_points[i] + a
return data
class feature_tree_test(unittest.TestCase):
def test_kdtree_basic(self):
n = 1000;
d = 64;
query_points = random.rand(n,d)*2-1;
data = planted_neighbors(query_points)
tr = cvCreateKDTree(data);
indices,dist = cvFindFeatures(tr, query_points, 1, 100);
correct = sum([i == j for j,i in enumerate(indices)])
assert(correct >= n * .75);
def test_spilltree_basic(self):
n = 1000;
d = 64;
query_points = random.rand(n,d)*2-1;
data = planted_neighbors(query_points)
tr = cvCreateSpillTree(data);
indices,dist = cvFindFeatures(tr, query_points, 1, 100);
correct = sum([i == j for j,i in enumerate(indices)])
assert(correct >= n * .75);
def suite():
return unittest.TestLoader().loadTestsFromTestCase(feature_tree_test)
if __name__ == '__main__':
suite = suite()
unittest.TextTestRunner(verbosity=2).run(suite)