mirror of
https://github.com/opencv/opencv.git
synced 2025-01-05 18:05:31 +08:00
117 lines
5.5 KiB
Plaintext
117 lines
5.5 KiB
Plaintext
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "internal_shared.hpp"
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
namespace blend
|
|
{
|
|
template <typename T>
|
|
__global__ void blendLinearKernel(int rows, int cols, int cn, const PtrStep<T> img1, const PtrStep<T> img2,
|
|
const PtrStepf weights1, const PtrStepf weights2, PtrStep<T> result)
|
|
{
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if (y < rows && x < cols)
|
|
{
|
|
int x_ = x / cn;
|
|
float w1 = weights1.ptr(y)[x_];
|
|
float w2 = weights2.ptr(y)[x_];
|
|
T p1 = img1.ptr(y)[x];
|
|
T p2 = img2.ptr(y)[x];
|
|
result.ptr(y)[x] = (p1 * w1 + p2 * w2) / (w1 + w2 + 1e-5f);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void blendLinearCaller(int rows, int cols, int cn, PtrStep<T> img1, PtrStep<T> img2, PtrStepf weights1, PtrStepf weights2, PtrStep<T> result, cudaStream_t stream)
|
|
{
|
|
dim3 threads(16, 16);
|
|
dim3 grid(divUp(cols * cn, threads.x), divUp(rows, threads.y));
|
|
|
|
blendLinearKernel<<<grid, threads, 0, stream>>>(rows, cols * cn, cn, img1, img2, weights1, weights2, result);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall(cudaDeviceSynchronize());
|
|
}
|
|
|
|
template void blendLinearCaller<uchar>(int, int, int, PtrStep<uchar>, PtrStep<uchar>, PtrStepf, PtrStepf, PtrStep<uchar>, cudaStream_t stream);
|
|
template void blendLinearCaller<float>(int, int, int, PtrStep<float>, PtrStep<float>, PtrStepf, PtrStepf, PtrStep<float>, cudaStream_t stream);
|
|
|
|
|
|
__global__ void blendLinearKernel8UC4(int rows, int cols, const PtrStepb img1, const PtrStepb img2,
|
|
const PtrStepf weights1, const PtrStepf weights2, PtrStepb result)
|
|
{
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if (y < rows && x < cols)
|
|
{
|
|
float w1 = weights1.ptr(y)[x];
|
|
float w2 = weights2.ptr(y)[x];
|
|
float sum_inv = 1.f / (w1 + w2 + 1e-5f);
|
|
w1 *= sum_inv;
|
|
w2 *= sum_inv;
|
|
uchar4 p1 = ((const uchar4*)img1.ptr(y))[x];
|
|
uchar4 p2 = ((const uchar4*)img2.ptr(y))[x];
|
|
((uchar4*)result.ptr(y))[x] = make_uchar4(p1.x * w1 + p2.x * w2, p1.y * w1 + p2.y * w2,
|
|
p1.z * w1 + p2.z * w2, p1.w * w1 + p2.w * w2);
|
|
}
|
|
}
|
|
|
|
void blendLinearCaller8UC4(int rows, int cols, PtrStepb img1, PtrStepb img2, PtrStepf weights1, PtrStepf weights2, PtrStepb result, cudaStream_t stream)
|
|
{
|
|
dim3 threads(16, 16);
|
|
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
|
|
|
|
blendLinearKernel8UC4<<<grid, threads, 0, stream>>>(rows, cols, img1, img2, weights1, weights2, result);
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall(cudaDeviceSynchronize());
|
|
}
|
|
} // namespace blend
|
|
}}} // namespace cv { namespace gpu { namespace device
|