mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
3dcc8c38b4
Removed obsolete python samples #25268 Clean Samples #25006 This PR removes 36 obsolete python samples from the project, as part of an effort to keep the codebase clean and focused on current best practices. Some of these samples will be updated with latest algorithms or will be combined with other existing samples. Removed Samples: > browse.py camshift.py coherence.py color_histogram.py contours.py deconvolution.py dft.py dis_opt_flow.py distrans.py edge.py feature_homography.py find_obj.py fitline.py gabor_threads.py hist.py houghcircles.py houghlines.py inpaint.py kalman.py kmeans.py laplace.py lk_homography.py lk_track.py logpolar.py mosse.py mser.py opt_flow.py plane_ar.py squares.py stitching.py text_skewness_correction.py texture_flow.py turing.py video_threaded.py video_v4l2.py watershed.py These changes aim to improve the repository's clarity and usability by removing examples that are no longer relevant or have been superseded by more up-to-date techniques.
99 lines
4.2 KiB
Python
Executable File
99 lines
4.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
"""
|
|
Tracking of rotating point.
|
|
Point moves in a circle and is characterized by a 1D state.
|
|
state_k+1 = state_k + speed + process_noise N(0, 1e-5)
|
|
The speed is constant.
|
|
Both state and measurements vectors are 1D (a point angle),
|
|
Measurement is the real state + gaussian noise N(0, 1e-1).
|
|
The real and the measured points are connected with red line segment,
|
|
the real and the estimated points are connected with yellow line segment,
|
|
the real and the corrected estimated points are connected with green line segment.
|
|
(if Kalman filter works correctly,
|
|
the yellow segment should be shorter than the red one and
|
|
the green segment should be shorter than the yellow one).
|
|
Pressing any key (except ESC) will reset the tracking.
|
|
Pressing ESC will stop the program.
|
|
"""
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
|
|
from math import cos, sin, sqrt, pi
|
|
|
|
def main():
|
|
img_height = 500
|
|
img_width = 500
|
|
kalman = cv.KalmanFilter(2, 1, 0)
|
|
|
|
code = -1
|
|
num_circle_steps = 12
|
|
while True:
|
|
img = np.zeros((img_height, img_width, 3), np.uint8)
|
|
state = np.array([[0.0],[(2 * pi) / num_circle_steps]]) # start state
|
|
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) # F. input
|
|
kalman.measurementMatrix = 1. * np.eye(1, 2) # H. input
|
|
kalman.processNoiseCov = 1e-5 * np.eye(2) # Q. input
|
|
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) # R. input
|
|
kalman.errorCovPost = 1. * np.eye(2, 2) # P._k|k KF state var
|
|
kalman.statePost = 0.1 * np.random.randn(2, 1) # x^_k|k KF state var
|
|
|
|
while True:
|
|
def calc_point(angle):
|
|
return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int),
|
|
np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int))
|
|
img = img * 1e-3
|
|
state_angle = state[0, 0]
|
|
state_pt = calc_point(state_angle)
|
|
# advance Kalman filter to next timestep
|
|
# updates statePre, statePost, errorCovPre, errorCovPost
|
|
# k-> k+1, x'(k) = A*x(k)
|
|
# P'(k) = temp1*At + Q
|
|
prediction = kalman.predict()
|
|
|
|
predict_pt = calc_point(prediction[0, 0]) # equivalent to calc_point(kalman.statePre[0,0])
|
|
# generate measurement
|
|
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
|
|
measurement = np.dot(kalman.measurementMatrix, state) + measurement
|
|
|
|
measurement_angle = measurement[0, 0]
|
|
measurement_pt = calc_point(measurement_angle)
|
|
|
|
# correct the state estimates based on measurements
|
|
# updates statePost & errorCovPost
|
|
kalman.correct(measurement)
|
|
improved_pt = calc_point(kalman.statePost[0, 0])
|
|
|
|
# plot points
|
|
cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2)
|
|
cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2)
|
|
cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2)
|
|
cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1)
|
|
# forecast one step
|
|
cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]),
|
|
(255, 255, 0), cv.MARKER_SQUARE, 12, 1)
|
|
|
|
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0) # red measurement error
|
|
cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0) # yellow pre-meas error
|
|
cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0) # green post-meas error
|
|
|
|
# update the real process
|
|
process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1)
|
|
state = np.dot(kalman.transitionMatrix, state) + process_noise # x_k+1 = F x_k + w_k
|
|
|
|
cv.imshow("Kalman", img)
|
|
code = cv.waitKey(1000)
|
|
if code != -1:
|
|
break
|
|
|
|
if code in [27, ord('q'), ord('Q')]:
|
|
break
|
|
|
|
print('Done')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(__doc__)
|
|
main()
|
|
cv.destroyAllWindows()
|