mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 06:10:02 +08:00
106 lines
3.1 KiB
C++
106 lines
3.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
// Recommends run this performance test via
|
|
// ./bin/opencv_perf_dnn 2> /dev/null | grep "PERFSTAT" -A 3
|
|
// because whole output includes Caffe's logs.
|
|
//
|
|
// Note: Be sure that interesting version of Caffe was linked.
|
|
// Note: There is an impact on Halide performance. Comment this tests if you
|
|
// want to run the last one.
|
|
//
|
|
// How to build Intel-Caffe with MKLDNN backend
|
|
// ============================================
|
|
// mkdir build && cd build
|
|
// cmake -DCMAKE_BUILD_TYPE=Release \
|
|
// -DUSE_MKLDNN_AS_DEFAULT_ENGINE=ON \
|
|
// -DUSE_MKL2017_AS_DEFAULT_ENGINE=OFF \
|
|
// -DCPU_ONLY=ON \
|
|
// -DCMAKE_INSTALL_PREFIX=/usr/local .. && make -j8
|
|
// sudo make install
|
|
//
|
|
// In case of problems with cublas_v2.h at include/caffe/util/device_alternate.hpp: add line
|
|
// #define CPU_ONLY
|
|
// before the first line
|
|
// #ifdef CPU_ONLY // CPU-only Caffe.
|
|
|
|
#if defined(HAVE_CAFFE) || defined(HAVE_CLCAFFE)
|
|
|
|
#include "perf_precomp.hpp"
|
|
#include <iostream>
|
|
#include <caffe/caffe.hpp>
|
|
|
|
namespace cvtest
|
|
{
|
|
|
|
static caffe::Net<float>* initNet(std::string proto, std::string weights)
|
|
{
|
|
proto = findDataFile(proto, false);
|
|
weights = findDataFile(weights, false);
|
|
|
|
#ifdef HAVE_CLCAFFE
|
|
caffe::Caffe::set_mode(caffe::Caffe::GPU);
|
|
caffe::Caffe::SetDevice(0);
|
|
|
|
caffe::Net<float>* net =
|
|
new caffe::Net<float>(proto, caffe::TEST, caffe::Caffe::GetDefaultDevice());
|
|
#else
|
|
caffe::Caffe::set_mode(caffe::Caffe::CPU);
|
|
|
|
caffe::Net<float>* net = new caffe::Net<float>(proto, caffe::TEST);
|
|
#endif
|
|
|
|
net->CopyTrainedLayersFrom(weights);
|
|
|
|
caffe::Blob<float>* input = net->input_blobs()[0];
|
|
|
|
CV_Assert(input->num() == 1);
|
|
CV_Assert(input->channels() == 3);
|
|
|
|
Mat inputMat(input->height(), input->width(), CV_32FC3, (char*)input->cpu_data());
|
|
randu(inputMat, 0.0f, 1.0f);
|
|
|
|
net->Forward();
|
|
return net;
|
|
}
|
|
|
|
PERF_TEST(GoogLeNet_caffe, CaffePerfTest)
|
|
{
|
|
caffe::Net<float>* net = initNet("dnn/bvlc_googlenet.prototxt",
|
|
"dnn/bvlc_googlenet.caffemodel");
|
|
TEST_CYCLE() net->Forward();
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST(AlexNet_caffe, CaffePerfTest)
|
|
{
|
|
caffe::Net<float>* net = initNet("dnn/bvlc_alexnet.prototxt",
|
|
"dnn/bvlc_alexnet.caffemodel");
|
|
TEST_CYCLE() net->Forward();
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST(ResNet50_caffe, CaffePerfTest)
|
|
{
|
|
caffe::Net<float>* net = initNet("dnn/ResNet-50-deploy.prototxt",
|
|
"dnn/ResNet-50-model.caffemodel");
|
|
TEST_CYCLE() net->Forward();
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST(SqueezeNet_v1_1_caffe, CaffePerfTest)
|
|
{
|
|
caffe::Net<float>* net = initNet("dnn/squeezenet_v1.1.prototxt",
|
|
"dnn/squeezenet_v1.1.caffemodel");
|
|
TEST_CYCLE() net->Forward();
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
} // namespace cvtest
|
|
|
|
#endif // HAVE_CAFFE
|