mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 06:10:02 +08:00
497 lines
15 KiB
C++
497 lines
15 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
using namespace cvtest;
|
|
using namespace testing;
|
|
|
|
//#define DUMP
|
|
|
|
#define OPTICAL_FLOW_DUMP_FILE "opticalflow/opticalflow_gold.bin"
|
|
#define OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/opticalflow_gold_cc20.bin"
|
|
#define INTERPOLATE_FRAMES_DUMP_FILE "opticalflow/interpolate_frames_gold.bin"
|
|
#define INTERPOLATE_FRAMES_DUMP_FILE_CC20 "opticalflow/interpolate_frames_gold_cc20.bin"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// BroxOpticalFlow
|
|
|
|
struct BroxOpticalFlow : TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
cv::Mat frame0;
|
|
cv::Mat frame1;
|
|
|
|
cv::Mat u_gold;
|
|
cv::Mat v_gold;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty());
|
|
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0);
|
|
|
|
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame1.empty());
|
|
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0);
|
|
|
|
#ifndef DUMP
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path());
|
|
if (devInfo.majorVersion() >= 2)
|
|
fname += OPTICAL_FLOW_DUMP_FILE_CC20;
|
|
else
|
|
fname += OPTICAL_FLOW_DUMP_FILE;
|
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
|
|
|
int rows, cols;
|
|
|
|
f.read((char*)&rows, sizeof(rows));
|
|
f.read((char*)&cols, sizeof(cols));
|
|
|
|
u_gold.create(rows, cols, CV_32FC1);
|
|
|
|
for (int i = 0; i < u_gold.rows; ++i)
|
|
f.read((char*)u_gold.ptr(i), u_gold.cols * sizeof(float));
|
|
|
|
v_gold.create(rows, cols, CV_32FC1);
|
|
|
|
for (int i = 0; i < v_gold.rows; ++i)
|
|
f.read((char*)v_gold.ptr(i), v_gold.cols * sizeof(float));
|
|
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST_P(BroxOpticalFlow, Regression)
|
|
{
|
|
cv::Mat u;
|
|
cv::Mat v;
|
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
|
|
|
cv::gpu::GpuMat d_u;
|
|
cv::gpu::GpuMat d_v;
|
|
|
|
d_flow(cv::gpu::GpuMat(frame0), cv::gpu::GpuMat(frame1), d_u, d_v);
|
|
|
|
d_u.download(u);
|
|
d_v.download(v);
|
|
|
|
#ifndef DUMP
|
|
|
|
EXPECT_MAT_NEAR(u_gold, u, 0);
|
|
EXPECT_MAT_NEAR(v_gold, v, 0);
|
|
|
|
#else
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path());
|
|
if (devInfo.majorVersion() >= 2)
|
|
fname += OPTICAL_FLOW_DUMP_FILE_CC20;
|
|
else
|
|
fname += OPTICAL_FLOW_DUMP_FILE;
|
|
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
|
|
|
f.write((char*)&u.rows, sizeof(u.rows));
|
|
f.write((char*)&u.cols, sizeof(u.cols));
|
|
|
|
for (int i = 0; i < u.rows; ++i)
|
|
f.write((char*)u.ptr(i), u.cols * sizeof(float));
|
|
|
|
for (int i = 0; i < v.rows; ++i)
|
|
f.write((char*)v.ptr(i), v.cols * sizeof(float));
|
|
|
|
#endif
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES);
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// InterpolateFrames
|
|
|
|
struct InterpolateFrames : TestWithParam<cv::gpu::DeviceInfo>
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
cv::Mat frame0;
|
|
cv::Mat frame1;
|
|
|
|
cv::Mat newFrame_gold;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty());
|
|
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0);
|
|
|
|
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame1.empty());
|
|
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0);
|
|
|
|
#ifndef DUMP
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path());
|
|
if (devInfo.majorVersion() >= 2)
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20;
|
|
else
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE;
|
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
|
|
|
int rows, cols;
|
|
|
|
f.read((char*)&rows, sizeof(rows));
|
|
f.read((char*)&cols, sizeof(cols));
|
|
|
|
newFrame_gold.create(rows, cols, CV_32FC1);
|
|
|
|
for (int i = 0; i < newFrame_gold.rows; ++i)
|
|
f.read((char*)newFrame_gold.ptr(i), newFrame_gold.cols * sizeof(float));
|
|
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST_P(InterpolateFrames, Regression)
|
|
{
|
|
cv::Mat newFrame;
|
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
|
|
|
cv::gpu::GpuMat d_frame0(frame0);
|
|
cv::gpu::GpuMat d_frame1(frame1);
|
|
|
|
cv::gpu::GpuMat d_fu;
|
|
cv::gpu::GpuMat d_fv;
|
|
cv::gpu::GpuMat d_bu;
|
|
cv::gpu::GpuMat d_bv;
|
|
|
|
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
|
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
|
|
|
cv::gpu::GpuMat d_newFrame;
|
|
cv::gpu::GpuMat d_buf;
|
|
|
|
cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, d_newFrame, d_buf);
|
|
|
|
d_newFrame.download(newFrame);
|
|
|
|
#ifndef DUMP
|
|
|
|
EXPECT_MAT_NEAR(newFrame_gold, newFrame, 1e-3);
|
|
|
|
#else
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path());
|
|
if (devInfo.majorVersion() >= 2)
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20;
|
|
else
|
|
fname += INTERPOLATE_FRAMES_DUMP_FILE;
|
|
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
|
|
|
f.write((char*)&newFrame.rows, sizeof(newFrame.rows));
|
|
f.write((char*)&newFrame.cols, sizeof(newFrame.cols));
|
|
|
|
for (int i = 0; i < newFrame.rows; ++i)
|
|
f.write((char*)newFrame.ptr(i), newFrame.cols * sizeof(float));
|
|
|
|
#endif
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES);
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// GoodFeaturesToTrack
|
|
|
|
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
cv::Mat image;
|
|
|
|
int maxCorners;
|
|
double qualityLevel;
|
|
double minDistance;
|
|
|
|
std::vector<cv::Point2f> pts_gold;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
minDistance = GET_PARAM(1);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
maxCorners = 1000;
|
|
qualityLevel= 0.01;
|
|
|
|
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
|
|
}
|
|
};
|
|
|
|
TEST_P(GoodFeaturesToTrack, Accuracy)
|
|
{
|
|
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
|
|
|
|
cv::gpu::GpuMat d_pts;
|
|
|
|
detector(loadMat(image), d_pts);
|
|
|
|
std::vector<cv::Point2f> pts(d_pts.cols);
|
|
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
|
|
d_pts.download(pts_mat);
|
|
|
|
ASSERT_EQ(pts_gold.size(), pts.size());
|
|
|
|
size_t mistmatch = 0;
|
|
|
|
for (size_t i = 0; i < pts.size(); ++i)
|
|
{
|
|
cv::Point2i a = pts_gold[i];
|
|
cv::Point2i b = pts[i];
|
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
|
|
|
if (!eq)
|
|
++mistmatch;
|
|
}
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
|
|
|
ASSERT_LE(bad_ratio, 0.01);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, Combine(ALL_DEVICES, Values(0.0, 3.0)));
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// PyrLKOpticalFlow
|
|
|
|
PARAM_TEST_CASE(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
|
|
cv::Mat frame0;
|
|
cv::Mat frame1;
|
|
|
|
std::vector<cv::Point2f> pts;
|
|
|
|
std::vector<cv::Point2f> nextPts_gold;
|
|
std::vector<unsigned char> status_gold;
|
|
std::vector<float> err_gold;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
bool useGray = GET_PARAM(1);
|
|
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::Mat gray_frame;
|
|
if (useGray)
|
|
gray_frame = frame0;
|
|
else
|
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
|
|
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
|
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold, cv::Size(21, 21), 3,
|
|
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5, CV_LKFLOW_GET_MIN_EIGENVALS);
|
|
}
|
|
};
|
|
|
|
TEST_P(PyrLKOpticalFlowSparse, Accuracy)
|
|
{
|
|
cv::gpu::PyrLKOpticalFlow d_pyrLK;
|
|
|
|
cv::gpu::GpuMat d_pts;
|
|
cv::Mat pts_mat(1, pts.size(), CV_32FC2, (void*)&pts[0]);
|
|
d_pts.upload(pts_mat);
|
|
|
|
cv::gpu::GpuMat d_nextPts;
|
|
cv::gpu::GpuMat d_status;
|
|
cv::gpu::GpuMat d_err;
|
|
|
|
d_pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
|
|
|
|
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
|
|
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
|
|
d_nextPts.download(nextPts_mat);
|
|
|
|
std::vector<unsigned char> status(d_status.cols);
|
|
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
|
|
d_status.download(status_mat);
|
|
|
|
std::vector<float> err(d_err.cols);
|
|
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
|
|
d_err.download(err_mat);
|
|
|
|
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
|
|
ASSERT_EQ(status_gold.size(), status.size());
|
|
ASSERT_EQ(err_gold.size(), err.size());
|
|
|
|
size_t mistmatch = 0;
|
|
|
|
for (size_t i = 0; i < nextPts.size(); ++i)
|
|
{
|
|
if (status[i] != status_gold[i])
|
|
{
|
|
++mistmatch;
|
|
continue;
|
|
}
|
|
|
|
if (status[i])
|
|
{
|
|
cv::Point2i a = nextPts[i];
|
|
cv::Point2i b = nextPts_gold[i];
|
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
|
float errdiff = std::abs(err[i] - err_gold[i]);
|
|
|
|
if (!eq || errdiff > 1e-4)
|
|
++mistmatch;
|
|
}
|
|
}
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
|
|
|
|
ASSERT_LE(bad_ratio, 0.01);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, Combine(ALL_DEVICES, Bool()));
|
|
|
|
#endif // HAVE_CUDA
|
|
|
|
|
|
PARAM_TEST_CASE(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo, double, int, int, bool)
|
|
{
|
|
Mat frame0, frame1;
|
|
|
|
double pyrScale;
|
|
int polyN;
|
|
double polySigma;
|
|
int flags;
|
|
bool useInitFlow;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty()); ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
|
|
|
pyrScale = GET_PARAM(1);
|
|
polyN = GET_PARAM(2);
|
|
polySigma = polyN <= 5 ? 1.1 : 1.5;
|
|
flags = GET_PARAM(3);
|
|
useInitFlow = GET_PARAM(4);
|
|
}
|
|
};
|
|
|
|
TEST_P(FarnebackOpticalFlowTest, Accuracy)
|
|
{
|
|
using namespace cv;
|
|
|
|
gpu::FarnebackOpticalFlow calc;
|
|
calc.pyrScale = pyrScale;
|
|
calc.polyN = polyN;
|
|
calc.polySigma = polySigma;
|
|
calc.flags = flags;
|
|
|
|
gpu::GpuMat d_flowx, d_flowy;
|
|
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy);
|
|
|
|
Mat flow;
|
|
if (useInitFlow)
|
|
{
|
|
Mat flowxy[] = {(Mat)d_flowx, (Mat)d_flowy};
|
|
merge(flowxy, 2, flow);
|
|
}
|
|
|
|
if (useInitFlow)
|
|
{
|
|
calc.flags |= OPTFLOW_USE_INITIAL_FLOW;
|
|
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy);
|
|
}
|
|
|
|
calcOpticalFlowFarneback(
|
|
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
|
|
calc.numIters, calc.polyN, calc.polySigma, calc.flags);
|
|
|
|
std::vector<Mat> flowxy; split(flow, flowxy);
|
|
/*std::cout << checkSimilarity(flowxy[0], (Mat)d_flowx) << " "
|
|
<< checkSimilarity(flowxy[1], (Mat)d_flowy) << std::endl;*/
|
|
EXPECT_LT(checkSimilarity(flowxy[0], (Mat)d_flowx), 0.1);
|
|
EXPECT_LT(checkSimilarity(flowxy[1], (Mat)d_flowy), 0.1);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest,
|
|
Combine(ALL_DEVICES,
|
|
Values(0.3, 0.5, 0.8),
|
|
Values(5, 7),
|
|
Values(0, (int)cv::OPTFLOW_FARNEBACK_GAUSSIAN),
|
|
Values(false, true)));
|