mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
bae9cef0b5
Moving RGBD parts to 3d * files moved from rgbd module in contrib repo * header paths fixed * perf file added * lapack compilation fixed * Rodrigues fixed in tests * rgbd namespace removed * headers fixed * initial: rgbd files moved to 3d module * rgbd updated from latest contrib master; less file duplication * "std::" for sin(), cos(), etc. * KinFu family -> back to contrib * paths & namespaces * removed duplicates, file version updated * namespace kinfu removed from 3d module * forgot to move test_colored_kinfu.cpp to contrib * tests fixed: Params removed * kinfu namespace removed * it works without objc bindings * include headers fixed * tests: data paths fixed * headers moved to/from public API * Intr -> Matx33f in public API * from kinfu_frame.hpp to utils.hpp * submap: Intr -> Matx33f, HashTSDFVolume -> Volume; no extra headers * no RgbdFrame class, no Mat fields & arg -> InputArray & pImpl * get/setPyramidAt() instead of lots of methods * Mat -> InputArray, TMat * prepareFrameCache: refactored * FastICPOdometry: +truncate threshold, +depthFactor; Mat/UMat choose * Mat/UMat choose * minor stuff related to headers * (un)signed int warnings; compilation minor issues * minors: submap: pyramids -> OdometryFrame; tests fix; FastICP minor; CV_EXPORTS_W for kinfu_frame.hpp * FastICPOdometry: caching, rgbCameraMatrix * OdometryFrame: pyramid%s% -> pyramids[] * drop: rgbCameraMatrix from FastICP, RGB cache mode, makeColoredFrameFrom depth and all color-functions it calls * makeFrameFromDepth, buildPyramidPointsNormals -> from public to internal utils.hpp * minors * FastICPOdometry: caching updated, init fields * OdometryFrameImpl<UMat> fixed * matrix building fixed; minors * returning linemode back to contrib * params.pose is Mat now * precomp headers reorganized * minor fixes, header paths, extra header removed * minors: intrinsics -> utils.hpp; whitespaces; empty namespace; warning fixed * moving declarations from/to headers * internal headers reorganized (once again) * fix include * extra var fix * fix include, fix (un)singed warning * calibration.cpp: reverting back * headers fix * workaround to fix bindings * temporary removed wrappers * VolumeType -> VolumeParams * (temporarily) removing wrappers for Volume and VolumeParams * pyopencv_linemod -> contrib * try to fix test_rgbd.py * headers fixed * fixing wrappers for rgbd * fixing docs * fixing rgbdPlane * RgbdNormals wrapped * wrap Volume and VolumeParams, VolumeType from enum to int * DepthCleaner wrapped * header folder "rgbd" -> "3d" * fixing header path * VolumeParams referenced by Ptr to support Python wrappers * render...() fixed * Ptr<VolumeParams> fixed * makeVolume(... resolution -> [X, Y, Z]) * fixing static declaration * try to fix ios objc bindings * OdometryFrame::release...() removed * fix for Odometry algos not supporting UMats: prepareFrameCache<>() * preparePyramidMask(): fix to compile with TMat = UMat * fixing debug guards * removing references back; adding makeOdometryFrame() instead * fixing OpenCL ICP hanging (some threads exit before reaching the barrier -> the rest threads hang) * try to fix objc wrapper warnings; rerun builders * VolumeType -> VolumeKind * try to fix OCL bug * prints removed * indentation fixed * headers fixed * license fix * WillowGarage licence notion removed, since it's in OpenCV's COPYRIGHT already * KinFu license notion shortened * debugging code removed * include guards fixed * KinFu license left in contrib module * isValidDepth() moved to private header * indentation fix * indentation fix in src files * RgbdNormals rewritten to pImpl * minor * DepthCleaner removed due to low code quality, no depthScale provided, no depth images found to be successfully filtered; can be replaced by bilateral filtering * minors, indentation * no "private" in public headers * depthTo3d test moved from separate file * Normals: setDepth() is useless, removing it * RgbdPlane => findPlanes() * rescaleDepth(): minor * warpFrame: minor * minor TODO * all Odometries (except base abstract class) rewritten to pImpl * FastICPOdometry now supports maxRotation and maxTranslation * minor * Odometry's children: now checks are done in setters * get rid of protected members in Odometry class * get/set cameraMatrix, transformType, maxRot/Trans, iters, minGradients -> OdometryImpl * cameraMatrix: from double to float * matrix exponentiation: Eigen -> dual quaternions * Odometry evaluation fixed to reuse existing code * "small" macro fixed by undef * pixNorm is calculated on CPU only now (and then uploads on GPU) * test registration: no cvtest classes * test RgbdNormals and findPlanes(): no cvtest classes * test_rgbd.py: minor fix * tests for Odometry: no cvtest classes; UMat tests; logging fixed * more CV_OVERRIDE to overriden functions * fixing nondependent names to dependent * more to prev commit * forgotten fixes: overriden functions, (non)dependent names * FastICPOdometry: fix UMat support when OpenCL is off * try to fix compilation: missing namespaces * Odometry: static const-mimicking functions to internal constants * forgotten change to prev commit * more forgotten fixes * do not expose "submap.hpp" by default * in-class enums: give names, CamelCase, int=>enums; minors * namespaces, underscores, String * std::map is used by pose graph, adding it * compute()'s signature fixed, computeImpl()'s too * RgbdNormals: Mat -> InputArray * depth.hpp: Mat -> InputArray * cameraMatrix: Matx33f -> InputArray + default value + checks * "details" headers are not visible by default * TSDF tests: rearranging checks * cameraMatrix: no (realistic) default value * renderPointsNormals*(): no wrappers for them * debug: assert on empty frame in TSDF tests * debugging code for TSDF GPU * debug from integrate to raycast * no (non-zero) default camera matrix anymore * drop debugging code (does not help) * try to fix TSDF GPU: constant -> global const ptr
573 lines
16 KiB
C++
573 lines
16 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test {
|
|
namespace {
|
|
|
|
using namespace cv;
|
|
|
|
/** Reprojects screen point to camera space given z coord. */
|
|
struct Reprojector
|
|
{
|
|
Reprojector() {}
|
|
inline Reprojector(Matx33f intr)
|
|
{
|
|
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
|
|
cx = intr(0, 2), cy = intr(1, 2);
|
|
}
|
|
template<typename T>
|
|
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
|
|
{
|
|
T x = p.z * (p.x - cx) * fxinv;
|
|
T y = p.z * (p.y - cy) * fyinv;
|
|
return cv::Point3_<T>(x, y, p.z);
|
|
}
|
|
|
|
float fxinv, fyinv, cx, cy;
|
|
};
|
|
|
|
template<class Scene>
|
|
struct RenderInvoker : ParallelLoopBody
|
|
{
|
|
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
|
|
Reprojector _reproj, float _depthFactor, bool _onlySemisphere)
|
|
: ParallelLoopBody(),
|
|
frame(_frame),
|
|
pose(_pose),
|
|
reproj(_reproj),
|
|
depthFactor(_depthFactor),
|
|
onlySemisphere(_onlySemisphere)
|
|
{ }
|
|
|
|
virtual void operator ()(const cv::Range& r) const
|
|
{
|
|
for (int y = r.start; y < r.end; y++)
|
|
{
|
|
float* frameRow = frame[y];
|
|
for (int x = 0; x < frame.cols; x++)
|
|
{
|
|
float pix = 0;
|
|
|
|
Point3f orig = pose.translation();
|
|
// direction through pixel
|
|
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
|
|
float xyt = 1.f / (screenVec.x * screenVec.x +
|
|
screenVec.y * screenVec.y + 1.f);
|
|
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
|
|
// screen space axis
|
|
dir.y = -dir.y;
|
|
|
|
const float maxDepth = 20.f;
|
|
const float maxSteps = 256;
|
|
float t = 0.f;
|
|
for (int step = 0; step < maxSteps && t < maxDepth; step++)
|
|
{
|
|
Point3f p = orig + dir * t;
|
|
float d = Scene::map(p, onlySemisphere);
|
|
if (d < 0.000001f)
|
|
{
|
|
float depth = std::sqrt(t * t * xyt);
|
|
pix = depth * depthFactor;
|
|
break;
|
|
}
|
|
t += d;
|
|
}
|
|
|
|
frameRow[x] = pix;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat_<float>& frame;
|
|
Affine3f pose;
|
|
Reprojector reproj;
|
|
float depthFactor;
|
|
bool onlySemisphere;
|
|
};
|
|
|
|
struct Scene
|
|
{
|
|
virtual ~Scene() {}
|
|
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere);
|
|
virtual Mat depth(Affine3f pose) = 0;
|
|
virtual std::vector<Affine3f> getPoses() = 0;
|
|
};
|
|
|
|
struct SemisphereScene : Scene
|
|
{
|
|
const int framesPerCycle = 72;
|
|
const float nCycles = 0.25f;
|
|
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f));
|
|
|
|
Size frameSize;
|
|
Matx33f intr;
|
|
float depthFactor;
|
|
bool onlySemisphere;
|
|
|
|
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) :
|
|
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere)
|
|
{ }
|
|
|
|
static float map(Point3f p, bool onlySemisphere)
|
|
{
|
|
float plane = p.y + 0.5f;
|
|
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f);
|
|
float sphereRadius = 0.5f;
|
|
float sphere = (float)cv::norm(spherePose) - sphereRadius;
|
|
float sphereMinusBox = sphere;
|
|
|
|
float subSphereRadius = 0.05f;
|
|
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
|
|
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
|
|
|
|
float res;
|
|
if (!onlySemisphere)
|
|
res = min({ sphereMinusBox, subSphere, plane });
|
|
else
|
|
res = sphereMinusBox;
|
|
|
|
return res;
|
|
}
|
|
|
|
Mat depth(Affine3f pose) override
|
|
{
|
|
Mat_<float> frame(frameSize);
|
|
Reprojector reproj(intr);
|
|
|
|
Range range(0, frame.rows);
|
|
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere));
|
|
|
|
return std::move(frame);
|
|
}
|
|
|
|
std::vector<Affine3f> getPoses() override
|
|
{
|
|
std::vector<Affine3f> poses;
|
|
for (int i = 0; i < framesPerCycle * nCycles; i++)
|
|
{
|
|
float angle = (float)(CV_2PI * i / framesPerCycle);
|
|
Affine3f pose;
|
|
pose = pose.rotate(startPose.rotation());
|
|
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle);
|
|
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
|
|
startPose.translation()[1],
|
|
startPose.translation()[2] * cos(angle)));
|
|
poses.push_back(pose);
|
|
}
|
|
|
|
return poses;
|
|
}
|
|
|
|
};
|
|
|
|
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere)
|
|
{
|
|
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere);
|
|
}
|
|
|
|
// this is a temporary solution
|
|
// ----------------------------
|
|
|
|
typedef cv::Vec4f ptype;
|
|
typedef cv::Mat_< ptype > Points;
|
|
typedef Points Normals;
|
|
typedef Size2i Size;
|
|
|
|
template<int p>
|
|
inline float specPow(float x)
|
|
{
|
|
if (p % 2 == 0)
|
|
{
|
|
float v = specPow<p / 2>(x);
|
|
return v * v;
|
|
}
|
|
else
|
|
{
|
|
float v = specPow<(p - 1) / 2>(x);
|
|
return v * v * x;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
inline float specPow<0>(float /*x*/)
|
|
{
|
|
return 1.f;
|
|
}
|
|
|
|
template<>
|
|
inline float specPow<1>(float x)
|
|
{
|
|
return x;
|
|
}
|
|
|
|
inline cv::Vec3f fromPtype(const ptype& x)
|
|
{
|
|
return cv::Vec3f(x[0], x[1], x[2]);
|
|
}
|
|
|
|
inline Point3f normalize(const Vec3f& v)
|
|
{
|
|
double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
return v * (nv ? 1. / nv : 0.);
|
|
}
|
|
|
|
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose)
|
|
{
|
|
Size sz = _points.size();
|
|
image.create(sz, CV_8UC4);
|
|
|
|
Points points = _points.getMat();
|
|
Normals normals = _normals.getMat();
|
|
|
|
Mat_<Vec4b> img = image.getMat();
|
|
|
|
Range range(0, sz.height);
|
|
const int nstripes = -1;
|
|
parallel_for_(range, [&](const Range&)
|
|
{
|
|
for (int y = range.start; y < range.end; y++)
|
|
{
|
|
Vec4b* imgRow = img[y];
|
|
const ptype* ptsRow = points[y];
|
|
const ptype* nrmRow = normals[y];
|
|
|
|
for (int x = 0; x < sz.width; x++)
|
|
{
|
|
Point3f p = fromPtype(ptsRow[x]);
|
|
Point3f n = fromPtype(nrmRow[x]);
|
|
|
|
Vec4b color;
|
|
|
|
if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z))
|
|
{
|
|
color = Vec4b(0, 32, 0, 0);
|
|
}
|
|
else
|
|
{
|
|
const float Ka = 0.3f; //ambient coeff
|
|
const float Kd = 0.5f; //diffuse coeff
|
|
const float Ks = 0.2f; //specular coeff
|
|
const int sp = 20; //specular power
|
|
|
|
const float Ax = 1.f; //ambient color, can be RGB
|
|
const float Dx = 1.f; //diffuse color, can be RGB
|
|
const float Sx = 1.f; //specular color, can be RGB
|
|
const float Lx = 1.f; //light color
|
|
|
|
Point3f l = normalize(lightPose.translation() - Vec3f(p));
|
|
Point3f v = normalize(-Vec3f(p));
|
|
Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l));
|
|
|
|
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) +
|
|
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f);
|
|
color = Vec4b(ix, ix, ix, 0);
|
|
}
|
|
|
|
imgRow[x] = color;
|
|
}
|
|
}
|
|
}, nstripes);
|
|
}
|
|
// ----------------------------
|
|
|
|
static const bool display = false;
|
|
static const bool parallelCheck = false;
|
|
|
|
class Settings
|
|
{
|
|
public:
|
|
float depthFactor;
|
|
Matx33f intr;
|
|
Size frameSize;
|
|
Vec3f lightPose;
|
|
|
|
Ptr<Volume> volume;
|
|
Ptr<Scene> scene;
|
|
std::vector<Affine3f> poses;
|
|
|
|
Settings(bool useHashTSDF, bool onlySemisphere)
|
|
{
|
|
frameSize = Size(640, 480);
|
|
|
|
float fx, fy, cx, cy;
|
|
fx = fy = 525.f;
|
|
cx = frameSize.width / 2 - 0.5f;
|
|
cy = frameSize.height / 2 - 0.5f;
|
|
intr = Matx33f(fx, 0, cx,
|
|
0, fy, cy,
|
|
0, 0, 1);
|
|
|
|
// 5000 for the 16-bit PNG files
|
|
// 1 for the 32-bit float images in the ROS bag files
|
|
depthFactor = 5000;
|
|
|
|
Vec3i volumeDims = Vec3i::all(512); //number of voxels
|
|
|
|
float volSize = 3.f;
|
|
float voxelSize = volSize / 512.f; //meters
|
|
|
|
// default pose of volume cube
|
|
Affine3f volumePose = Affine3f().translate(Vec3f(-volSize / 2.f, -volSize / 2.f, 0.5f));
|
|
float tsdf_trunc_dist = 7 * voxelSize; // about 0.04f in meters
|
|
int tsdf_max_weight = 64; //frames
|
|
|
|
float raycast_step_factor = 0.25f; //in voxel sizes
|
|
// gradient delta factor is fixed at 1.0f and is not used
|
|
//p.gradient_delta_factor = 0.5f; //in voxel sizes
|
|
|
|
//p.lightPose = p.volume_pose.translation()/4; //meters
|
|
lightPose = Vec3f::all(0.f); //meters
|
|
|
|
// depth truncation is not used by default but can be useful in some scenes
|
|
float truncateThreshold = 0.f; //meters
|
|
|
|
VolumeParams::VolumeKind volumeKind = VolumeParams::VolumeKind::TSDF;
|
|
|
|
if (useHashTSDF)
|
|
{
|
|
volumeKind = VolumeParams::VolumeKind::HASHTSDF;
|
|
truncateThreshold = 4.f;
|
|
}
|
|
else
|
|
{
|
|
volSize = 3.f;
|
|
volumeDims = Vec3i::all(128); //number of voxels
|
|
voxelSize = volSize / 128.f;
|
|
tsdf_trunc_dist = 2 * voxelSize; // 0.04f in meters
|
|
|
|
raycast_step_factor = 0.75f; //in voxel sizes
|
|
}
|
|
|
|
volume = makeVolume(volumeKind, voxelSize, volumePose.matrix,
|
|
raycast_step_factor, tsdf_trunc_dist, tsdf_max_weight,
|
|
truncateThreshold, volumeDims[0], volumeDims[1], volumeDims[2]);
|
|
|
|
scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere);
|
|
poses = scene->getPoses();
|
|
}
|
|
};
|
|
|
|
void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose)
|
|
{
|
|
Mat image;
|
|
patchNaNs(points);
|
|
imshow("depth", depth * (1.f / depthFactor / 4.f));
|
|
renderPointsNormals(points, normals, image, lightPose);
|
|
imshow("render", image);
|
|
waitKey(2000);
|
|
}
|
|
|
|
void normalsCheck(Mat normals)
|
|
{
|
|
Vec4f vector;
|
|
for (auto pvector = normals.begin<Vec4f>(); pvector < normals.end<Vec4f>(); pvector++)
|
|
{
|
|
vector = *pvector;
|
|
if (!cvIsNaN(vector[0]))
|
|
{
|
|
float length = vector[0] * vector[0] +
|
|
vector[1] * vector[1] +
|
|
vector[2] * vector[2];
|
|
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1";
|
|
}
|
|
}
|
|
}
|
|
|
|
int counterOfValid(Mat points)
|
|
{
|
|
Vec4f* v;
|
|
int i, j;
|
|
int count = 0;
|
|
for (i = 0; i < points.rows; ++i)
|
|
{
|
|
v = (points.ptr<Vec4f>(i));
|
|
for (j = 0; j < points.cols; ++j)
|
|
{
|
|
if ((v[j])[0] != 0 ||
|
|
(v[j])[1] != 0 ||
|
|
(v[j])[2] != 0)
|
|
{
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void normal_test(bool isHashTSDF, bool isRaycast, bool isFetchPointsNormals, bool isFetchNormals)
|
|
{
|
|
auto normalCheck = [](Vec4f& vector, const int*)
|
|
{
|
|
if (!cvIsNaN(vector[0]))
|
|
{
|
|
float length = vector[0] * vector[0] +
|
|
vector[1] * vector[1] +
|
|
vector[2] * vector[2];
|
|
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1";
|
|
}
|
|
};
|
|
|
|
Settings settings(isHashTSDF, false);
|
|
|
|
Mat depth = settings.scene->depth(settings.poses[0]);
|
|
UMat _points, _normals, _tmpnormals;
|
|
UMat _newPoints, _newNormals;
|
|
Mat points, normals;
|
|
AccessFlag af = ACCESS_READ;
|
|
|
|
settings.volume->integrate(depth, settings.depthFactor, settings.poses[0].matrix, settings.intr);
|
|
|
|
if (isRaycast)
|
|
{
|
|
settings.volume->raycast(settings.poses[0].matrix, settings.intr, settings.frameSize, _points, _normals);
|
|
}
|
|
if (isFetchPointsNormals)
|
|
{
|
|
settings.volume->fetchPointsNormals(_points, _normals);
|
|
}
|
|
if (isFetchNormals)
|
|
{
|
|
settings.volume->fetchPointsNormals(_points, _tmpnormals);
|
|
settings.volume->fetchNormals(_points, _normals);
|
|
}
|
|
|
|
normals = _normals.getMat(af);
|
|
points = _points.getMat(af);
|
|
|
|
if (parallelCheck)
|
|
normals.forEach<Vec4f>(normalCheck);
|
|
else
|
|
normalsCheck(normals);
|
|
|
|
if (isRaycast && display)
|
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
|
|
|
|
if (isRaycast)
|
|
{
|
|
settings.volume->raycast(settings.poses[17].matrix, settings.intr, settings.frameSize, _newPoints, _newNormals);
|
|
normals = _newNormals.getMat(af);
|
|
points = _newPoints.getMat(af);
|
|
normalsCheck(normals);
|
|
|
|
if (parallelCheck)
|
|
normals.forEach<Vec4f>(normalCheck);
|
|
else
|
|
normalsCheck(normals);
|
|
|
|
if (display)
|
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
|
|
}
|
|
|
|
points.release(); normals.release();
|
|
}
|
|
|
|
void valid_points_test(bool isHashTSDF)
|
|
{
|
|
Settings settings(isHashTSDF, true);
|
|
|
|
Mat depth = settings.scene->depth(settings.poses[0]);
|
|
UMat _points, _normals, _newPoints, _newNormals;
|
|
AccessFlag af = ACCESS_READ;
|
|
Mat points, normals;
|
|
int anfas, profile;
|
|
|
|
settings.volume->integrate(depth, settings.depthFactor, settings.poses[0].matrix, settings.intr);
|
|
settings.volume->raycast(settings.poses[0].matrix, settings.intr, settings.frameSize, _points, _normals);
|
|
normals = _normals.getMat(af);
|
|
points = _points.getMat(af);
|
|
patchNaNs(points);
|
|
anfas = counterOfValid(points);
|
|
|
|
if (display)
|
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
|
|
|
|
settings.volume->raycast(settings.poses[17].matrix, settings.intr, settings.frameSize, _newPoints, _newNormals);
|
|
normals = _newNormals.getMat(af);
|
|
points = _newPoints.getMat(af);
|
|
patchNaNs(points);
|
|
profile = counterOfValid(points);
|
|
|
|
if (display)
|
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose);
|
|
|
|
// TODO: why profile == 2*anfas ?
|
|
float percentValidity = float(anfas) / float(profile);
|
|
|
|
ASSERT_NE(profile, 0) << "There is no points in profile";
|
|
ASSERT_NE(anfas, 0) << "There is no points in anfas";
|
|
ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")";
|
|
}
|
|
|
|
#ifndef HAVE_OPENCL
|
|
TEST(TSDF, raycast_normals) { normal_test(false, true, false, false); }
|
|
TEST(TSDF, fetch_points_normals) { normal_test(false, false, true, false); }
|
|
TEST(TSDF, fetch_normals) { normal_test(false, false, false, true); }
|
|
TEST(TSDF, valid_points) { valid_points_test(false); }
|
|
|
|
TEST(HashTSDF, raycast_normals) { normal_test(true, true, false, false); }
|
|
TEST(HashTSDF, fetch_points_normals) { normal_test(true, false, true, false); }
|
|
TEST(HashTSDF, fetch_normals) { normal_test(true, false, false, true); }
|
|
TEST(HashTSDF, valid_points) { valid_points_test(true); }
|
|
#else
|
|
TEST(TSDF_CPU, raycast_normals)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
normal_test(false, true, false, false);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(TSDF_CPU, fetch_points_normals)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
normal_test(false, false, true, false);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(TSDF_CPU, fetch_normals)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
normal_test(false, false, false, true);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(TSDF_CPU, valid_points)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
valid_points_test(false);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(HashTSDF_CPU, raycast_normals)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
normal_test(true, true, false, false);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(HashTSDF_CPU, fetch_points_normals)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
normal_test(true, false, true, false);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(HashTSDF_CPU, fetch_normals)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
normal_test(true, false, false, true);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
|
|
TEST(HashTSDF_CPU, valid_points)
|
|
{
|
|
cv::ocl::setUseOpenCL(false);
|
|
valid_points_test(true);
|
|
cv::ocl::setUseOpenCL(true);
|
|
}
|
|
#endif
|
|
}
|
|
} // namespace
|