mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 04:00:30 +08:00
491e3627b6
This avoids MSVC 19.14.26428.1 to call vectorized __vdecl_cosf4() function with less precision.
474 lines
15 KiB
C++
474 lines
15 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "seamless_cloning.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
|
|
void Cloning::computeGradientX( const Mat &img, Mat &gx)
|
|
{
|
|
Mat kernel = Mat::zeros(1, 3, CV_8S);
|
|
kernel.at<char>(0,2) = 1;
|
|
kernel.at<char>(0,1) = -1;
|
|
|
|
if(img.channels() == 3)
|
|
{
|
|
filter2D(img, gx, CV_32F, kernel);
|
|
}
|
|
else if (img.channels() == 1)
|
|
{
|
|
Mat tmp[3];
|
|
for(int chan = 0 ; chan < 3 ; ++chan)
|
|
{
|
|
filter2D(img, tmp[chan], CV_32F, kernel);
|
|
}
|
|
merge(tmp, 3, gx);
|
|
}
|
|
}
|
|
|
|
void Cloning::computeGradientY( const Mat &img, Mat &gy)
|
|
{
|
|
Mat kernel = Mat::zeros(3, 1, CV_8S);
|
|
kernel.at<char>(2,0) = 1;
|
|
kernel.at<char>(1,0) = -1;
|
|
|
|
if(img.channels() == 3)
|
|
{
|
|
filter2D(img, gy, CV_32F, kernel);
|
|
}
|
|
else if (img.channels() == 1)
|
|
{
|
|
Mat tmp[3];
|
|
for(int chan = 0 ; chan < 3 ; ++chan)
|
|
{
|
|
filter2D(img, tmp[chan], CV_32F, kernel);
|
|
}
|
|
merge(tmp, 3, gy);
|
|
}
|
|
}
|
|
|
|
void Cloning::computeLaplacianX( const Mat &img, Mat &laplacianX)
|
|
{
|
|
Mat kernel = Mat::zeros(1, 3, CV_8S);
|
|
kernel.at<char>(0,0) = -1;
|
|
kernel.at<char>(0,1) = 1;
|
|
filter2D(img, laplacianX, CV_32F, kernel);
|
|
}
|
|
|
|
void Cloning::computeLaplacianY( const Mat &img, Mat &laplacianY)
|
|
{
|
|
Mat kernel = Mat::zeros(3, 1, CV_8S);
|
|
kernel.at<char>(0,0) = -1;
|
|
kernel.at<char>(1,0) = 1;
|
|
filter2D(img, laplacianY, CV_32F, kernel);
|
|
}
|
|
|
|
void Cloning::dst(const Mat& src, Mat& dest, bool invert)
|
|
{
|
|
Mat temp = Mat::zeros(src.rows, 2 * src.cols + 2, CV_32F);
|
|
|
|
int flag = invert ? DFT_ROWS + DFT_SCALE + DFT_INVERSE: DFT_ROWS;
|
|
|
|
src.copyTo(temp(Rect(1,0, src.cols, src.rows)));
|
|
|
|
for(int j = 0 ; j < src.rows ; ++j)
|
|
{
|
|
float * tempLinePtr = temp.ptr<float>(j);
|
|
const float * srcLinePtr = src.ptr<float>(j);
|
|
for(int i = 0 ; i < src.cols ; ++i)
|
|
{
|
|
tempLinePtr[src.cols + 2 + i] = - srcLinePtr[src.cols - 1 - i];
|
|
}
|
|
}
|
|
|
|
Mat planes[] = {temp, Mat::zeros(temp.size(), CV_32F)};
|
|
Mat complex;
|
|
|
|
merge(planes, 2, complex);
|
|
dft(complex, complex, flag);
|
|
split(complex, planes);
|
|
temp = Mat::zeros(src.cols, 2 * src.rows + 2, CV_32F);
|
|
|
|
for(int j = 0 ; j < src.cols ; ++j)
|
|
{
|
|
float * tempLinePtr = temp.ptr<float>(j);
|
|
for(int i = 0 ; i < src.rows ; ++i)
|
|
{
|
|
float val = planes[1].ptr<float>(i)[j + 1];
|
|
tempLinePtr[i + 1] = val;
|
|
tempLinePtr[temp.cols - 1 - i] = - val;
|
|
}
|
|
}
|
|
|
|
Mat planes2[] = {temp, Mat::zeros(temp.size(), CV_32F)};
|
|
|
|
merge(planes2, 2, complex);
|
|
dft(complex, complex, flag);
|
|
split(complex, planes2);
|
|
|
|
temp = planes2[1].t();
|
|
dest = Mat::zeros(src.size(), CV_32F);
|
|
temp(Rect( 0, 1, src.cols, src.rows)).copyTo(dest);
|
|
}
|
|
|
|
void Cloning::idst(const Mat& src, Mat& dest)
|
|
{
|
|
dst(src, dest, true);
|
|
}
|
|
|
|
void Cloning::solve(const Mat &img, Mat& mod_diff, Mat &result)
|
|
{
|
|
const int w = img.cols;
|
|
const int h = img.rows;
|
|
|
|
Mat res;
|
|
dst(mod_diff, res);
|
|
|
|
for(int j = 0 ; j < h-2; j++)
|
|
{
|
|
float * resLinePtr = res.ptr<float>(j);
|
|
for(int i = 0 ; i < w-2; i++)
|
|
{
|
|
resLinePtr[i] /= (filter_X[i] + filter_Y[j] - 4);
|
|
}
|
|
}
|
|
|
|
idst(res, mod_diff);
|
|
|
|
unsigned char * resLinePtr = result.ptr<unsigned char>(0);
|
|
const unsigned char * imgLinePtr = img.ptr<unsigned char>(0);
|
|
const float * interpLinePtr = NULL;
|
|
|
|
//first col
|
|
for(int i = 0 ; i < w ; ++i)
|
|
result.ptr<unsigned char>(0)[i] = img.ptr<unsigned char>(0)[i];
|
|
|
|
for(int j = 1 ; j < h-1 ; ++j)
|
|
{
|
|
resLinePtr = result.ptr<unsigned char>(j);
|
|
imgLinePtr = img.ptr<unsigned char>(j);
|
|
interpLinePtr = mod_diff.ptr<float>(j-1);
|
|
|
|
//first row
|
|
resLinePtr[0] = imgLinePtr[0];
|
|
|
|
for(int i = 1 ; i < w-1 ; ++i)
|
|
{
|
|
//saturate cast is not used here, because it behaves differently from the previous implementation
|
|
//most notable, saturate_cast rounds before truncating, here it's the opposite.
|
|
float value = interpLinePtr[i-1];
|
|
if(value < 0.)
|
|
resLinePtr[i] = 0;
|
|
else if (value > 255.0)
|
|
resLinePtr[i] = 255;
|
|
else
|
|
resLinePtr[i] = static_cast<unsigned char>(value);
|
|
}
|
|
|
|
//last row
|
|
resLinePtr[w-1] = imgLinePtr[w-1];
|
|
}
|
|
|
|
//last col
|
|
resLinePtr = result.ptr<unsigned char>(h-1);
|
|
imgLinePtr = img.ptr<unsigned char>(h-1);
|
|
for(int i = 0 ; i < w ; ++i)
|
|
resLinePtr[i] = imgLinePtr[i];
|
|
}
|
|
|
|
void Cloning::poissonSolver(const Mat &img, Mat &laplacianX , Mat &laplacianY, Mat &result)
|
|
{
|
|
const int w = img.cols;
|
|
const int h = img.rows;
|
|
|
|
Mat lap = Mat(img.size(),CV_32FC1);
|
|
|
|
lap = laplacianX + laplacianY;
|
|
|
|
Mat bound = img.clone();
|
|
|
|
rectangle(bound, Point(1, 1), Point(img.cols-2, img.rows-2), Scalar::all(0), -1);
|
|
Mat boundary_points;
|
|
Laplacian(bound, boundary_points, CV_32F);
|
|
|
|
boundary_points = lap - boundary_points;
|
|
|
|
Mat mod_diff = boundary_points(Rect(1, 1, w-2, h-2));
|
|
|
|
solve(img,mod_diff,result);
|
|
}
|
|
|
|
void Cloning::initVariables(const Mat &destination, const Mat &binaryMask)
|
|
{
|
|
destinationGradientX = Mat(destination.size(),CV_32FC3);
|
|
destinationGradientY = Mat(destination.size(),CV_32FC3);
|
|
patchGradientX = Mat(destination.size(),CV_32FC3);
|
|
patchGradientY = Mat(destination.size(),CV_32FC3);
|
|
|
|
binaryMaskFloat = Mat(binaryMask.size(),CV_32FC1);
|
|
binaryMaskFloatInverted = Mat(binaryMask.size(),CV_32FC1);
|
|
|
|
//init of the filters used in the dst
|
|
const int w = destination.cols;
|
|
filter_X.resize(w - 2);
|
|
double scale = CV_PI / (w - 1);
|
|
for(int i = 0 ; i < w-2 ; ++i)
|
|
filter_X[i] = 2.0f * (float)std::cos(scale * (i + 1));
|
|
|
|
const int h = destination.rows;
|
|
filter_Y.resize(h - 2);
|
|
scale = CV_PI / (h - 1);
|
|
for(int j = 0 ; j < h - 2 ; ++j)
|
|
filter_Y[j] = 2.0f * (float)std::cos(scale * (j + 1));
|
|
}
|
|
|
|
void Cloning::computeDerivatives(const Mat& destination, const Mat &patch, const Mat &binaryMask)
|
|
{
|
|
initVariables(destination,binaryMask);
|
|
|
|
computeGradientX(destination,destinationGradientX);
|
|
computeGradientY(destination,destinationGradientY);
|
|
|
|
computeGradientX(patch,patchGradientX);
|
|
computeGradientY(patch,patchGradientY);
|
|
|
|
Mat Kernel(Size(3, 3), CV_8UC1);
|
|
Kernel.setTo(Scalar(1));
|
|
erode(binaryMask, binaryMask, Kernel, Point(-1,-1), 3);
|
|
|
|
binaryMask.convertTo(binaryMaskFloat,CV_32FC1,1.0/255.0);
|
|
}
|
|
|
|
void Cloning::scalarProduct(Mat mat, float r, float g, float b)
|
|
{
|
|
vector <Mat> channels;
|
|
split(mat,channels);
|
|
multiply(channels[2],r,channels[2]);
|
|
multiply(channels[1],g,channels[1]);
|
|
multiply(channels[0],b,channels[0]);
|
|
merge(channels,mat);
|
|
}
|
|
|
|
void Cloning::arrayProduct(const cv::Mat& lhs, const cv::Mat& rhs, cv::Mat& result) const
|
|
{
|
|
vector <Mat> lhs_channels;
|
|
vector <Mat> result_channels;
|
|
|
|
split(lhs,lhs_channels);
|
|
split(result,result_channels);
|
|
|
|
for(int chan = 0 ; chan < 3 ; ++chan)
|
|
multiply(lhs_channels[chan],rhs,result_channels[chan]);
|
|
|
|
merge(result_channels,result);
|
|
}
|
|
|
|
void Cloning::poisson(const Mat &destination)
|
|
{
|
|
Mat laplacianX = Mat(destination.size(),CV_32FC3);
|
|
Mat laplacianY = Mat(destination.size(),CV_32FC3);
|
|
|
|
laplacianX = destinationGradientX + patchGradientX;
|
|
laplacianY = destinationGradientY + patchGradientY;
|
|
|
|
computeLaplacianX(laplacianX,laplacianX);
|
|
computeLaplacianY(laplacianY,laplacianY);
|
|
|
|
split(laplacianX,rgbx_channel);
|
|
split(laplacianY,rgby_channel);
|
|
|
|
split(destination,output);
|
|
|
|
for(int chan = 0 ; chan < 3 ; ++chan)
|
|
{
|
|
poissonSolver(output[chan], rgbx_channel[chan], rgby_channel[chan], output[chan]);
|
|
}
|
|
}
|
|
|
|
void Cloning::evaluate(const Mat &I, const Mat &wmask, const Mat &cloned)
|
|
{
|
|
bitwise_not(wmask,wmask);
|
|
|
|
wmask.convertTo(binaryMaskFloatInverted,CV_32FC1,1.0/255.0);
|
|
|
|
arrayProduct(destinationGradientX,binaryMaskFloatInverted, destinationGradientX);
|
|
arrayProduct(destinationGradientY,binaryMaskFloatInverted, destinationGradientY);
|
|
|
|
poisson(I);
|
|
|
|
merge(output,cloned);
|
|
}
|
|
|
|
void Cloning::normalClone(const Mat &destination, const Mat &patch, const Mat &binaryMask, Mat &cloned, int flag)
|
|
{
|
|
const int w = destination.cols;
|
|
const int h = destination.rows;
|
|
const int channel = destination.channels();
|
|
const int n_elem_in_line = w * channel;
|
|
|
|
computeDerivatives(destination,patch,binaryMask);
|
|
|
|
switch(flag)
|
|
{
|
|
case NORMAL_CLONE:
|
|
arrayProduct(patchGradientX,binaryMaskFloat, patchGradientX);
|
|
arrayProduct(patchGradientY,binaryMaskFloat, patchGradientY);
|
|
break;
|
|
|
|
case MIXED_CLONE:
|
|
{
|
|
AutoBuffer<int> maskIndices(n_elem_in_line);
|
|
for (int i = 0; i < n_elem_in_line; ++i)
|
|
maskIndices[i] = i / channel;
|
|
|
|
for(int i=0;i < h; i++)
|
|
{
|
|
float * patchXLinePtr = patchGradientX.ptr<float>(i);
|
|
float * patchYLinePtr = patchGradientY.ptr<float>(i);
|
|
const float * destinationXLinePtr = destinationGradientX.ptr<float>(i);
|
|
const float * destinationYLinePtr = destinationGradientY.ptr<float>(i);
|
|
const float * binaryMaskLinePtr = binaryMaskFloat.ptr<float>(i);
|
|
|
|
for(int j=0; j < n_elem_in_line; j++)
|
|
{
|
|
int maskIndex = maskIndices[j];
|
|
|
|
if(abs(patchXLinePtr[j] - patchYLinePtr[j]) >
|
|
abs(destinationXLinePtr[j] - destinationYLinePtr[j]))
|
|
{
|
|
patchXLinePtr[j] *= binaryMaskLinePtr[maskIndex];
|
|
patchYLinePtr[j] *= binaryMaskLinePtr[maskIndex];
|
|
}
|
|
else
|
|
{
|
|
patchXLinePtr[j] = destinationXLinePtr[j]
|
|
* binaryMaskLinePtr[maskIndex];
|
|
patchYLinePtr[j] = destinationYLinePtr[j]
|
|
* binaryMaskLinePtr[maskIndex];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MONOCHROME_TRANSFER:
|
|
Mat gray = Mat(patch.size(),CV_8UC1);
|
|
cvtColor(patch, gray, COLOR_BGR2GRAY );
|
|
|
|
computeGradientX(gray,patchGradientX);
|
|
computeGradientY(gray,patchGradientY);
|
|
|
|
arrayProduct(patchGradientX, binaryMaskFloat, patchGradientX);
|
|
arrayProduct(patchGradientY, binaryMaskFloat, patchGradientY);
|
|
break;
|
|
|
|
}
|
|
|
|
evaluate(destination,binaryMask,cloned);
|
|
}
|
|
|
|
void Cloning::localColorChange(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float red_mul=1.0,
|
|
float green_mul=1.0, float blue_mul=1.0)
|
|
{
|
|
computeDerivatives(I,mask,wmask);
|
|
|
|
arrayProduct(patchGradientX,binaryMaskFloat, patchGradientX);
|
|
arrayProduct(patchGradientY,binaryMaskFloat, patchGradientY);
|
|
scalarProduct(patchGradientX,red_mul,green_mul,blue_mul);
|
|
scalarProduct(patchGradientY,red_mul,green_mul,blue_mul);
|
|
|
|
evaluate(I,wmask,cloned);
|
|
}
|
|
|
|
void Cloning::illuminationChange(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float alpha, float beta)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
computeDerivatives(I,mask,wmask);
|
|
|
|
arrayProduct(patchGradientX,binaryMaskFloat, patchGradientX);
|
|
arrayProduct(patchGradientY,binaryMaskFloat, patchGradientY);
|
|
|
|
Mat mag = Mat(I.size(),CV_32FC3);
|
|
magnitude(patchGradientX,patchGradientY,mag);
|
|
|
|
Mat multX, multY, multx_temp, multy_temp;
|
|
|
|
multiply(patchGradientX,pow(alpha,beta),multX);
|
|
pow(mag,-1*beta, multx_temp);
|
|
multiply(multX,multx_temp, patchGradientX);
|
|
patchNaNs(patchGradientX);
|
|
|
|
multiply(patchGradientY,pow(alpha,beta),multY);
|
|
pow(mag,-1*beta, multy_temp);
|
|
multiply(multY,multy_temp,patchGradientY);
|
|
patchNaNs(patchGradientY);
|
|
|
|
Mat zeroMask = (patchGradientX != 0);
|
|
|
|
patchGradientX.copyTo(patchGradientX, zeroMask);
|
|
patchGradientY.copyTo(patchGradientY, zeroMask);
|
|
|
|
evaluate(I,wmask,cloned);
|
|
}
|
|
|
|
void Cloning::textureFlatten(Mat &I, Mat &mask, Mat &wmask, float low_threshold,
|
|
float high_threshold, int kernel_size, Mat &cloned)
|
|
{
|
|
computeDerivatives(I,mask,wmask);
|
|
|
|
Mat out = Mat(mask.size(),CV_8UC1);
|
|
Canny(mask,out,low_threshold,high_threshold,kernel_size);
|
|
|
|
Mat zeros(patchGradientX.size(), CV_32FC3);
|
|
zeros.setTo(0);
|
|
Mat zerosMask = (out != 255);
|
|
zeros.copyTo(patchGradientX, zerosMask);
|
|
zeros.copyTo(patchGradientY, zerosMask);
|
|
|
|
arrayProduct(patchGradientX,binaryMaskFloat, patchGradientX);
|
|
arrayProduct(patchGradientY,binaryMaskFloat, patchGradientY);
|
|
|
|
evaluate(I,wmask,cloned);
|
|
}
|