opencv/3rdparty/carotene/src/sum.cpp

386 lines
13 KiB
C++

/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3-clause BSD License)
*
* Copyright (C) 2012-2015, NVIDIA Corporation, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort (including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "common.hpp"
#include "vtransform.hpp"
namespace CAROTENE_NS {
bool isSumSupported(u32 channels)
{
return (channels && channels < 5);
}
void sum(const Size2D &_size,
const u8 * srcBase, ptrdiff_t srcStride,
u32 * sumdst, u32 channels)
{
internal::assertSupportedConfiguration(isSumSupported(channels));
#ifdef CAROTENE_NEON
Size2D size(_size);
if (srcStride == (ptrdiff_t)(size.width))
{
size.width *= size.height;
size.height = 1;
}
const ptrdiff_t width = size.width * channels;
for(size_t k = 0; k < size.height; ++k)
{
const u8* src = internal::getRowPtr( srcBase, srcStride, k);
ptrdiff_t i = 0;
if (channels == 3)
{
uint32x4_t vs1231 = vdupq_n_u32(0);
uint32x4_t vs3123 = vdupq_n_u32(0);
uint32x4_t vs2312 = vdupq_n_u32(0);
for (; i <= width - 257*8*3; i += 257*8*3, src += 257*8*3)
{
uint16x8_t s1 = vmovl_u8(vld1_u8(src + 0));
uint16x8_t s2 = vmovl_u8(vld1_u8(src + 8));
uint16x8_t s3 = vmovl_u8(vld1_u8(src + 16));
for (ptrdiff_t j = 8*3; j < 257*8*3; j+= 8*3)
{
internal::prefetch(src + j + 24);
s1 = vaddw_u8(s1, vld1_u8(src + j + 0));
s2 = vaddw_u8(s2, vld1_u8(src + j + 8));
s3 = vaddw_u8(s3, vld1_u8(src + j + 16));
}
vs1231 = vqaddq_u32(vs1231, vaddl_u16(vget_low_u16(s1), vget_high_u16(s2)));
vs3123 = vqaddq_u32(vs3123, vaddl_u16(vget_low_u16(s2), vget_high_u16(s3)));
vs2312 = vqaddq_u32(vs2312, vaddl_u16(vget_low_u16(s3), vget_high_u16(s1)));
}
if (i <= width - 8*3)
{
uint16x8_t s1 = vmovl_u8(vld1_u8(src + 0));
uint16x8_t s2 = vmovl_u8(vld1_u8(src + 8));
uint16x8_t s3 = vmovl_u8(vld1_u8(src + 16));
for (i += 8*3, src += 8*3; i <= width - 8*3; i += 8*3, src += 8*3)
{
internal::prefetch(src + 24);
s1 = vaddw_u8(s1, vld1_u8(src + 0));
s2 = vaddw_u8(s2, vld1_u8(src + 8));
s3 = vaddw_u8(s3, vld1_u8(src + 16));
}
vs1231 = vqaddq_u32(vs1231, vaddl_u16(vget_low_u16(s1), vget_high_u16(s2)));
vs3123 = vqaddq_u32(vs3123, vaddl_u16(vget_low_u16(s2), vget_high_u16(s3)));
vs2312 = vqaddq_u32(vs2312, vaddl_u16(vget_low_u16(s3), vget_high_u16(s1)));
}
u32 sum[12];
vst1q_u32(sum+0, vs1231);
vst1q_u32(sum+4, vs2312);
vst1q_u32(sum+8, vs3123);
for (; i < width; i += 3, src += 3)
{
sumdst[0] += src[0];
sumdst[1] += src[1];
sumdst[2] += src[2];
}
sumdst[0] += sum[0] + sum[3] + sum[6] + sum[9];
sumdst[1] += sum[1] + sum[4] + sum[7] + sum[10];
sumdst[2] += sum[2] + sum[5] + sum[8] + sum[11];
}
else
{
uint32x4_t vs = vdupq_n_u32(0);
for (; i <= width - 257*8; i += 257*8, src += 257 * 8)
{
uint16x8_t s1 = vmovl_u8(vld1_u8(src));
for (int j = 8; j < 257 * 8; j += 8)
{
internal::prefetch(src + j);
s1 = vaddw_u8(s1, vld1_u8(src + j));
}
vs = vqaddq_u32(vs, vaddl_u16(vget_low_u16(s1), vget_high_u16(s1)));
}
if (i < width - 7)
{
uint16x8_t s1 = vmovl_u8(vld1_u8(src));
for(i+=8,src+=8; i < width-7; i+=8,src+=8)
{
internal::prefetch(src);
s1 = vaddw_u8(s1, vld1_u8(src));
}
vs = vqaddq_u32(vs, vaddl_u16(vget_low_u16(s1), vget_high_u16(s1)));
}
if (channels == 1)
{
uint32x2_t vs2 = vqadd_u32(vget_low_u32(vs), vget_high_u32(vs));
uint32x2_t vs1 = vreinterpret_u32_u64(vpaddl_u32(vs2));
u32 s0 = vget_lane_u32(vs1, 0);
for(; i < width; ++i,++src)
s0 += src[0];
sumdst[0] += s0;
}
else if (channels == 4)
{
vst1q_u32(sumdst, vqaddq_u32(vs, vld1q_u32(sumdst)));
for(; i < width; i+=4,src+=4)
{
sumdst[0] += src[0];
sumdst[1] += src[1];
sumdst[2] += src[2];
sumdst[3] += src[3];
}
}
else//if (channels == 2)
{
uint32x2_t vs2 = vqadd_u32(vget_low_u32(vs), vget_high_u32(vs));
vst1_u32(sumdst, vqadd_u32(vs2, vld1_u32(sumdst)));
for(; i < width; i+=2,src+=2)
{
sumdst[0] += src[0];
sumdst[1] += src[1];
}
}
}//channels != 3
}
#else
(void)_size;
(void)srcBase;
(void)srcStride;
(void)sumdst;
(void)channels;
#endif
}
void sum(const Size2D &_size,
const f32 * srcBase, ptrdiff_t srcStride,
f64 * sumdst, u32 channels)
{
internal::assertSupportedConfiguration(isSumSupported(channels));
#ifdef CAROTENE_NEON
Size2D size(_size);
if (srcStride == (ptrdiff_t)(size.width))
{
size.width *= size.height;
size.height = 1;
}
const ptrdiff_t width = size.width * channels;
for(size_t k = 0; k < size.height; ++k)
{
const f32* src = internal::getRowPtr( srcBase, srcStride, k);
ptrdiff_t i = 0;
if (channels == 3)
{
float32x4_t vs1231 = vdupq_n_f32(0);
float32x4_t vs2312 = vdupq_n_f32(0);
float32x4_t vs3123 = vdupq_n_f32(0);
for(; i <= width-12; i += 12)
{
internal::prefetch(src + i + 12);
vs1231 = vaddq_f32(vs1231, vld1q_f32(src + i + 0));
vs2312 = vaddq_f32(vs2312, vld1q_f32(src + i + 4));
vs3123 = vaddq_f32(vs3123, vld1q_f32(src + i + 8));
}
f32 s[12];
vst1q_f32(s + 0, vs1231);
vst1q_f32(s + 4, vs2312);
vst1q_f32(s + 8, vs3123);
sumdst[0] += s[0] + s[3] + s[6] + s[9];
sumdst[1] += s[1] + s[4] + s[7] + s[10];
sumdst[2] += s[2] + s[5] + s[8] + s[11];
for( ; i < width; i+=3)
{
sumdst[0] += src[i];
sumdst[1] += src[i+1];
sumdst[2] += src[i+2];
}
}
else
{
float32x4_t vs = vdupq_n_f32(0);
for(; i <= width-4; i += 4)
{
internal::prefetch(src + i);
vs = vaddq_f32(vs, vld1q_f32(src+i));
}
if (channels == 1)
{
float32x2_t vs2 = vpadd_f32(vget_low_f32(vs), vget_high_f32(vs));
f32 s[2];
vst1_f32(s, vs2);
sumdst[0] += s[0] + s[1];
for( ; i < width; i++)
sumdst[0] += src[i];
}
else if (channels == 4)
{
f32 s[4];
vst1q_f32(s, vs);
sumdst[0] += s[0];
sumdst[1] += s[1];
sumdst[2] += s[2];
sumdst[3] += s[3];
}
else//if (channels == 2)
{
float32x2_t vs2 = vadd_f32(vget_low_f32(vs), vget_high_f32(vs));
f32 s[2];
vst1_f32(s, vs2);
sumdst[0] += s[0];
sumdst[1] += s[1];
if(i < width)
{
sumdst[0] += src[i];
sumdst[1] += src[i+1];
}
}
}//channels != 3
}
#else
(void)_size;
(void)srcBase;
(void)srcStride;
(void)sumdst;
(void)channels;
#endif
}
bool isSqsumSupported(u32 channels)
{
return (channels && ((4/channels)*channels == 4));
}
void sqsum(const Size2D &_size,
const u8 * srcBase, ptrdiff_t srcStride,
f64 * sumdst, f64 * sqsumdst, u32 channels)
{
internal::assertSupportedConfiguration(isSqsumSupported(channels));
#ifdef CAROTENE_NEON
Size2D size(_size);
if (srcStride == (ptrdiff_t)(size.width*channels))
{
size.width *= size.height;
size.height = 1;
}
const size_t width = size.width * channels;
size_t blockSize0 = 1 << 23;
size_t roiw8 = width & ~7;
uint32x4_t v_zero = vdupq_n_u32(0u);
for (size_t i = 0; i < size.height; ++i)
{
const u8 * src = internal::getRowPtr(srcBase, srcStride, i);
size_t j = 0u;
while (j < roiw8)
{
size_t blockSize = std::min(roiw8 - j, blockSize0) + j;
uint32x4_t v_sum = v_zero;
uint32x4_t v_sqsum = v_zero;
for ( ; j < blockSize ; j += 8, src += 8)
{
internal::prefetch(src);
uint8x8_t v_src0 = vld1_u8(src);
uint16x8_t v_src = vmovl_u8(v_src0);
uint16x4_t v_srclo = vget_low_u16(v_src), v_srchi = vget_high_u16(v_src);
v_sum = vaddq_u32(v_sum, vaddl_u16(v_srclo, v_srchi));
v_sqsum = vmlal_u16(v_sqsum, v_srclo, v_srclo);
v_sqsum = vmlal_u16(v_sqsum, v_srchi, v_srchi);
}
u32 arsum[8];
vst1q_u32(arsum, v_sum);
vst1q_u32(arsum + 4, v_sqsum);
sumdst[0] += (f64)arsum[0];
sumdst[1 % channels] += (f64)arsum[1];
sumdst[2 % channels] += (f64)arsum[2];
sumdst[3 % channels] += (f64)arsum[3];
sqsumdst[0] += (f64)arsum[4];
sqsumdst[1 % channels] += (f64)arsum[5];
sqsumdst[2 % channels] += (f64)arsum[6];
sqsumdst[3 % channels] += (f64)arsum[7];
}
// collect a few last elements in the current row
// it's ok to process channels elements per step
// since we could handle 1,2 or 4 channels
// we always have channels-fold amount of elements remaining
for ( ; j < width; j+=channels, src+=channels)
{
for (u32 kk = 0; kk < channels; kk++)
{
u32 srcval = src[kk];
sumdst[kk] += srcval;
sqsumdst[kk] += srcval * srcval;
}
}
}
#else
(void)_size;
(void)srcBase;
(void)srcStride;
(void)sumdst;
(void)sqsumdst;
(void)channels;
#endif
}
} // namespace CAROTENE_NS