opencv/modules/features2d/perf/perf_feature2d.cpp
Jiri Horner 5f20e802d2 Merge pull request #8869 from hrnr:akaze_part1
[GSOC] Speeding-up AKAZE, part #1 (#8869)

* ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS

added protective macros to always force macro expansion of arguments. This allows using CV_ENUM and CV_FLAGS with macro arguments.

* feature2d: unify perf test

use the same test for all detectors/descriptors we have.

* added AKAZE tests

* features2d: extend perf tests

* add BRISK, KAZE, MSER
* run all extract tests on AKAZE keypoints, so that the test si more comparable for the speed of extraction

* feature2d: rework opencl perf tests

use the same configuration as cpu tests

* feature2d: fix descriptors allocation for AKAZE and KAZE

fix crash when descriptors are UMat

* feature2d: name enum to fix build with older gcc

* Revert "ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS"

This reverts commit 19538cac1e.

This wasn't a great idea after all. There is a lot of flags implemented as #define, that we don't want to expand.

* feature2d: fix expansion problems with CV_ENUM in perf

* expand arguments before passing them to CV_ENUM. This does not need modifications of CV_ENUM.
* added include guards to `perf_feature2d.hpp`

* feature2d: fix crash in AKAZE when using KAZE descriptors

* out-of-bound access in Get_MSURF_Descriptor_64
* this happened reliably when running on provided keypoints (not computed by the same instance)

* feature2d: added regression tests for AKAZE

* test with both MLDB and KAZE keypoints

* feature2d: do not compute keypoints orientation twice

* always compute keypoints orientation, when computing keypoints
* do not recompute keypoint orientation when computing descriptors

this allows to test detection and extraction separately

* features2d: fix crash in AKAZE

* out-of-bound reads near the image edge
* same as the bug in KAZE descriptors

* feature2d: refactor invariance testing

* split detectors and descriptors tests
* rewrite to google test to simplify debugging
* add tests for AKAZE and one test for ORB

* stitching: add tests with AKAZE feature finder

* added basic stitching cpu and ocl tests
* fix bug in AKAZE wrapper for stitching pipeline causing lots of
! OPENCV warning: getUMat()/getMat() call chain possible problem.
!                 Base object is dead, while nested/derived object is still alive or processed.
!                 Please check lifetime of UMat/Mat objects!
2017-06-21 14:33:09 +03:00

67 lines
1.8 KiB
C++

#include "perf_feature2d.hpp"
PERF_TEST_P(feature2d, detect, testing::Combine(Feature2DType::all(), TEST_IMAGES))
{
Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam()));
std::string filename = getDataPath(get<1>(GetParam()));
Mat img = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
ASSERT_TRUE(detector);
declare.in(img);
Mat mask;
vector<KeyPoint> points;
TEST_CYCLE() detector->detect(img, points, mask);
EXPECT_GT(points.size(), 20u);
SANITY_CHECK_NOTHING();
}
PERF_TEST_P(feature2d, extract, testing::Combine(testing::Values(DETECTORS_EXTRACTORS), TEST_IMAGES))
{
Ptr<Feature2D> detector = AKAZE::create();
Ptr<Feature2D> extractor = getFeature2D(get<0>(GetParam()));
std::string filename = getDataPath(get<1>(GetParam()));
Mat img = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
ASSERT_TRUE(extractor);
declare.in(img);
Mat mask;
vector<KeyPoint> points;
detector->detect(img, points, mask);
EXPECT_GT(points.size(), 20u);
Mat descriptors;
TEST_CYCLE() extractor->compute(img, points, descriptors);
EXPECT_EQ((size_t)descriptors.rows, points.size());
SANITY_CHECK_NOTHING();
}
PERF_TEST_P(feature2d, detectAndExtract, testing::Combine(testing::Values(DETECTORS_EXTRACTORS), TEST_IMAGES))
{
Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam()));
std::string filename = getDataPath(get<1>(GetParam()));
Mat img = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
ASSERT_TRUE(detector);
declare.in(img);
Mat mask;
vector<KeyPoint> points;
Mat descriptors;
TEST_CYCLE() detector->detectAndCompute(img, mask, points, descriptors, false);
EXPECT_GT(points.size(), 20u);
EXPECT_EQ((size_t)descriptors.rows, points.size());
SANITY_CHECK_NOTHING();
}