mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 16:44:05 +08:00
542 lines
18 KiB
C++
542 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
/****************************************************************************************\
|
|
* Watershed *
|
|
\****************************************************************************************/
|
|
|
|
typedef struct CvWSNode
|
|
{
|
|
struct CvWSNode* next;
|
|
int mask_ofs;
|
|
int img_ofs;
|
|
}
|
|
CvWSNode;
|
|
|
|
typedef struct CvWSQueue
|
|
{
|
|
CvWSNode* first;
|
|
CvWSNode* last;
|
|
}
|
|
CvWSQueue;
|
|
|
|
static CvWSNode*
|
|
icvAllocWSNodes( CvMemStorage* storage )
|
|
{
|
|
CvWSNode* n = 0;
|
|
|
|
int i, count = (storage->block_size - sizeof(CvMemBlock))/sizeof(*n) - 1;
|
|
|
|
n = (CvWSNode*)cvMemStorageAlloc( storage, count*sizeof(*n) );
|
|
for( i = 0; i < count-1; i++ )
|
|
n[i].next = n + i + 1;
|
|
n[count-1].next = 0;
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
|
{
|
|
const int IN_QUEUE = -2;
|
|
const int WSHED = -1;
|
|
const int NQ = 256;
|
|
cv::Ptr<CvMemStorage> storage;
|
|
|
|
CvMat sstub, *src;
|
|
CvMat dstub, *dst;
|
|
CvSize size;
|
|
CvWSNode* free_node = 0, *node;
|
|
CvWSQueue q[NQ];
|
|
int active_queue;
|
|
int i, j;
|
|
int db, dg, dr;
|
|
int* mask;
|
|
uchar* img;
|
|
int mstep, istep;
|
|
int subs_tab[513];
|
|
|
|
// MAX(a,b) = b + MAX(a-b,0)
|
|
#define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
|
|
// MIN(a,b) = a - MAX(a-b,0)
|
|
#define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])
|
|
|
|
#define ws_push(idx,mofs,iofs) \
|
|
{ \
|
|
if( !free_node ) \
|
|
free_node = icvAllocWSNodes( storage );\
|
|
node = free_node; \
|
|
free_node = free_node->next;\
|
|
node->next = 0; \
|
|
node->mask_ofs = mofs; \
|
|
node->img_ofs = iofs; \
|
|
if( q[idx].last ) \
|
|
q[idx].last->next=node; \
|
|
else \
|
|
q[idx].first = node; \
|
|
q[idx].last = node; \
|
|
}
|
|
|
|
#define ws_pop(idx,mofs,iofs) \
|
|
{ \
|
|
node = q[idx].first; \
|
|
q[idx].first = node->next; \
|
|
if( !node->next ) \
|
|
q[idx].last = 0; \
|
|
node->next = free_node; \
|
|
free_node = node; \
|
|
mofs = node->mask_ofs; \
|
|
iofs = node->img_ofs; \
|
|
}
|
|
|
|
#define c_diff(ptr1,ptr2,diff) \
|
|
{ \
|
|
db = abs((ptr1)[0] - (ptr2)[0]);\
|
|
dg = abs((ptr1)[1] - (ptr2)[1]);\
|
|
dr = abs((ptr1)[2] - (ptr2)[2]);\
|
|
diff = ws_max(db,dg); \
|
|
diff = ws_max(diff,dr); \
|
|
assert( 0 <= diff && diff <= 255 ); \
|
|
}
|
|
|
|
src = cvGetMat( srcarr, &sstub );
|
|
dst = cvGetMat( dstarr, &dstub );
|
|
|
|
if( CV_MAT_TYPE(src->type) != CV_8UC3 )
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel input images are supported" );
|
|
|
|
if( CV_MAT_TYPE(dst->type) != CV_32SC1 )
|
|
CV_Error( CV_StsUnsupportedFormat,
|
|
"Only 32-bit, 1-channel output images are supported" );
|
|
|
|
if( !CV_ARE_SIZES_EQ( src, dst ))
|
|
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
|
|
|
|
size = cvGetMatSize(src);
|
|
storage = cvCreateMemStorage();
|
|
|
|
istep = src->step;
|
|
img = src->data.ptr;
|
|
mstep = dst->step / sizeof(mask[0]);
|
|
mask = dst->data.i;
|
|
|
|
memset( q, 0, NQ*sizeof(q[0]) );
|
|
|
|
for( i = 0; i < 256; i++ )
|
|
subs_tab[i] = 0;
|
|
for( i = 256; i <= 512; i++ )
|
|
subs_tab[i] = i - 256;
|
|
|
|
// draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
|
|
for( j = 0; j < size.width; j++ )
|
|
mask[j] = mask[j + mstep*(size.height-1)] = WSHED;
|
|
|
|
// initial phase: put all the neighbor pixels of each marker to the ordered queue -
|
|
// determine the initial boundaries of the basins
|
|
for( i = 1; i < size.height-1; i++ )
|
|
{
|
|
img += istep; mask += mstep;
|
|
mask[0] = mask[size.width-1] = WSHED;
|
|
|
|
for( j = 1; j < size.width-1; j++ )
|
|
{
|
|
int* m = mask + j;
|
|
if( m[0] < 0 ) m[0] = 0;
|
|
if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
|
|
{
|
|
uchar* ptr = img + j*3;
|
|
int idx = 256, t;
|
|
if( m[-1] > 0 )
|
|
c_diff( ptr, ptr - 3, idx );
|
|
if( m[1] > 0 )
|
|
{
|
|
c_diff( ptr, ptr + 3, t );
|
|
idx = ws_min( idx, t );
|
|
}
|
|
if( m[-mstep] > 0 )
|
|
{
|
|
c_diff( ptr, ptr - istep, t );
|
|
idx = ws_min( idx, t );
|
|
}
|
|
if( m[mstep] > 0 )
|
|
{
|
|
c_diff( ptr, ptr + istep, t );
|
|
idx = ws_min( idx, t );
|
|
}
|
|
assert( 0 <= idx && idx <= 255 );
|
|
ws_push( idx, i*mstep + j, i*istep + j*3 );
|
|
m[0] = IN_QUEUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
// find the first non-empty queue
|
|
for( i = 0; i < NQ; i++ )
|
|
if( q[i].first )
|
|
break;
|
|
|
|
// if there is no markers, exit immediately
|
|
if( i == NQ )
|
|
return;
|
|
|
|
active_queue = i;
|
|
img = src->data.ptr;
|
|
mask = dst->data.i;
|
|
|
|
// recursively fill the basins
|
|
for(;;)
|
|
{
|
|
int mofs, iofs;
|
|
int lab = 0, t;
|
|
int* m;
|
|
uchar* ptr;
|
|
|
|
if( q[active_queue].first == 0 )
|
|
{
|
|
for( i = active_queue+1; i < NQ; i++ )
|
|
if( q[i].first )
|
|
break;
|
|
if( i == NQ )
|
|
break;
|
|
active_queue = i;
|
|
}
|
|
|
|
ws_pop( active_queue, mofs, iofs );
|
|
|
|
m = mask + mofs;
|
|
ptr = img + iofs;
|
|
t = m[-1];
|
|
if( t > 0 ) lab = t;
|
|
t = m[1];
|
|
if( t > 0 )
|
|
{
|
|
if( lab == 0 ) lab = t;
|
|
else if( t != lab ) lab = WSHED;
|
|
}
|
|
t = m[-mstep];
|
|
if( t > 0 )
|
|
{
|
|
if( lab == 0 ) lab = t;
|
|
else if( t != lab ) lab = WSHED;
|
|
}
|
|
t = m[mstep];
|
|
if( t > 0 )
|
|
{
|
|
if( lab == 0 ) lab = t;
|
|
else if( t != lab ) lab = WSHED;
|
|
}
|
|
assert( lab != 0 );
|
|
m[0] = lab;
|
|
if( lab == WSHED )
|
|
continue;
|
|
|
|
if( m[-1] == 0 )
|
|
{
|
|
c_diff( ptr, ptr - 3, t );
|
|
ws_push( t, mofs - 1, iofs - 3 );
|
|
active_queue = ws_min( active_queue, t );
|
|
m[-1] = IN_QUEUE;
|
|
}
|
|
if( m[1] == 0 )
|
|
{
|
|
c_diff( ptr, ptr + 3, t );
|
|
ws_push( t, mofs + 1, iofs + 3 );
|
|
active_queue = ws_min( active_queue, t );
|
|
m[1] = IN_QUEUE;
|
|
}
|
|
if( m[-mstep] == 0 )
|
|
{
|
|
c_diff( ptr, ptr - istep, t );
|
|
ws_push( t, mofs - mstep, iofs - istep );
|
|
active_queue = ws_min( active_queue, t );
|
|
m[-mstep] = IN_QUEUE;
|
|
}
|
|
if( m[mstep] == 0 )
|
|
{
|
|
c_diff( ptr, ptr + istep, t );
|
|
ws_push( t, mofs + mstep, iofs + istep );
|
|
active_queue = ws_min( active_queue, t );
|
|
m[mstep] = IN_QUEUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void cv::watershed( InputArray _src, InputOutputArray markers )
|
|
{
|
|
Mat src = _src.getMat();
|
|
CvMat c_src = _src.getMat(), c_markers = markers.getMat();
|
|
cvWatershed( &c_src, &c_markers );
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Meanshift *
|
|
\****************************************************************************************/
|
|
|
|
CV_IMPL void
|
|
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
|
double sp0, double sr, int max_level,
|
|
CvTermCriteria termcrit )
|
|
{
|
|
const int cn = 3;
|
|
const int MAX_LEVELS = 8;
|
|
|
|
if( (unsigned)max_level > (unsigned)MAX_LEVELS )
|
|
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
|
|
|
|
std::vector<cv::Mat> src_pyramid(max_level+1);
|
|
std::vector<cv::Mat> dst_pyramid(max_level+1);
|
|
cv::Mat mask0;
|
|
int i, j, level;
|
|
//uchar* submask = 0;
|
|
|
|
#define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
|
|
tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)
|
|
|
|
double sr2 = sr * sr;
|
|
int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
|
|
int tab[768];
|
|
cv::Mat src0 = cv::cvarrToMat(srcarr);
|
|
cv::Mat dst0 = cv::cvarrToMat(dstarr);
|
|
|
|
if( src0.type() != CV_8UC3 )
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
|
|
|
|
if( src0.type() != dst0.type() )
|
|
CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
|
|
|
|
if( src0.size() != dst0.size() )
|
|
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
|
|
|
|
if( !(termcrit.type & CV_TERMCRIT_ITER) )
|
|
termcrit.max_iter = 5;
|
|
termcrit.max_iter = MAX(termcrit.max_iter,1);
|
|
termcrit.max_iter = MIN(termcrit.max_iter,100);
|
|
if( !(termcrit.type & CV_TERMCRIT_EPS) )
|
|
termcrit.epsilon = 1.f;
|
|
termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
|
|
|
|
for( i = 0; i < 768; i++ )
|
|
tab[i] = (i - 255)*(i - 255);
|
|
|
|
// 1. construct pyramid
|
|
src_pyramid[0] = src0;
|
|
dst_pyramid[0] = dst0;
|
|
for( level = 1; level <= max_level; level++ )
|
|
{
|
|
src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
|
|
(src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
|
|
dst_pyramid[level].create( src_pyramid[level].rows,
|
|
src_pyramid[level].cols, src_pyramid[level].type() );
|
|
cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
|
|
//CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
|
|
}
|
|
|
|
mask0.create(src0.rows, src0.cols, CV_8UC1);
|
|
//CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));
|
|
|
|
// 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
|
|
for( level = max_level; level >= 0; level-- )
|
|
{
|
|
cv::Mat src = src_pyramid[level];
|
|
cv::Size size = src.size();
|
|
uchar* sptr = src.data;
|
|
int sstep = (int)src.step;
|
|
uchar* mask = 0;
|
|
int mstep = 0;
|
|
uchar* dptr;
|
|
int dstep;
|
|
float sp = (float)(sp0 / (1 << level));
|
|
sp = MAX( sp, 1 );
|
|
|
|
if( level < max_level )
|
|
{
|
|
cv::Size size1 = dst_pyramid[level+1].size();
|
|
cv::Mat m( size.height, size.width, CV_8UC1, mask0.data );
|
|
dstep = (int)dst_pyramid[level+1].step;
|
|
dptr = dst_pyramid[level+1].data + dstep + cn;
|
|
mstep = (int)m.step;
|
|
mask = m.data + mstep;
|
|
//cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
|
|
cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
|
|
m.setTo(cv::Scalar::all(0));
|
|
|
|
for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
|
|
{
|
|
for( j = 1; j < size1.width-1; j++, dptr += cn )
|
|
{
|
|
int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
|
|
mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
|
|
cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
|
|
}
|
|
}
|
|
|
|
cv::dilate( m, m, cv::Mat() );
|
|
mask = m.data;
|
|
}
|
|
|
|
dptr = dst_pyramid[level].data;
|
|
dstep = (int)dst_pyramid[level].step;
|
|
|
|
for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
|
|
dptr += dstep - size.width*3,
|
|
mask += mstep )
|
|
{
|
|
for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
|
|
{
|
|
int x0 = j, y0 = i, x1, y1, iter;
|
|
int c0, c1, c2;
|
|
|
|
if( mask && !mask[j] )
|
|
continue;
|
|
|
|
c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
|
|
|
|
// iterate meanshift procedure
|
|
for( iter = 0; iter < termcrit.max_iter; iter++ )
|
|
{
|
|
uchar* ptr;
|
|
int x, y, count = 0;
|
|
int minx, miny, maxx, maxy;
|
|
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
|
|
double icount;
|
|
int stop_flag;
|
|
|
|
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
|
|
minx = cvRound(x0 - sp); minx = MAX(minx, 0);
|
|
miny = cvRound(y0 - sp); miny = MAX(miny, 0);
|
|
maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
|
|
maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
|
|
ptr = sptr + (miny - i)*sstep + (minx - j)*3;
|
|
|
|
for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
|
|
{
|
|
int row_count = 0;
|
|
x = minx;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; x + 3 <= maxx; x += 4, ptr += 12 )
|
|
{
|
|
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
|
|
{
|
|
s0 += t0; s1 += t1; s2 += t2;
|
|
sx += x; row_count++;
|
|
}
|
|
t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
|
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
|
|
{
|
|
s0 += t0; s1 += t1; s2 += t2;
|
|
sx += x+1; row_count++;
|
|
}
|
|
t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
|
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
|
|
{
|
|
s0 += t0; s1 += t1; s2 += t2;
|
|
sx += x+2; row_count++;
|
|
}
|
|
t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
|
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
|
|
{
|
|
s0 += t0; s1 += t1; s2 += t2;
|
|
sx += x+3; row_count++;
|
|
}
|
|
}
|
|
#endif
|
|
for( ; x <= maxx; x++, ptr += 3 )
|
|
{
|
|
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
|
|
{
|
|
s0 += t0; s1 += t1; s2 += t2;
|
|
sx += x; row_count++;
|
|
}
|
|
}
|
|
count += row_count;
|
|
sy += y*row_count;
|
|
}
|
|
|
|
if( count == 0 )
|
|
break;
|
|
|
|
icount = 1./count;
|
|
x1 = cvRound(sx*icount);
|
|
y1 = cvRound(sy*icount);
|
|
s0 = cvRound(s0*icount);
|
|
s1 = cvRound(s1*icount);
|
|
s2 = cvRound(s2*icount);
|
|
|
|
stop_flag = (x0 == x1 && y0 == y1) || abs(x1-x0) + abs(y1-y0) +
|
|
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
|
|
tab[s2 - c2 + 255] <= termcrit.epsilon;
|
|
|
|
x0 = x1; y0 = y1;
|
|
c0 = s0; c1 = s1; c2 = s2;
|
|
|
|
if( stop_flag )
|
|
break;
|
|
}
|
|
|
|
dptr[0] = (uchar)c0;
|
|
dptr[1] = (uchar)c1;
|
|
dptr[2] = (uchar)c2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
|
double sp, double sr, int maxLevel,
|
|
TermCriteria termcrit )
|
|
{
|
|
Mat src = _src.getMat();
|
|
|
|
if( src.empty() )
|
|
return;
|
|
|
|
_dst.create( src.size(), src.type() );
|
|
CvMat c_src = src, c_dst = _dst.getMat();
|
|
cvPyrMeanShiftFiltering( &c_src, &c_dst, sp, sr, maxLevel, termcrit );
|
|
}
|