opencv/modules/dnn/src/layers/reduce_layer.cpp
Laurent Berger 5fe3933346
Merge pull request #25120 from LaurentBerger:I25103
Fixed ReduceMean layer behaviour #25120

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
2024-03-04 09:36:53 +03:00

526 lines
18 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv { namespace dnn {
class ReduceLayerImpl CV_FINAL : public ReduceLayer
{
public:
ReduceLayerImpl(const LayerParams& params) {
setParamsFrom(params);
// set reduce type
CV_Assert(params.has("reduce"));
String op_type = toLowerCase(params.get<String>("reduce"));
if (op_type == "max")
reduce_type = ReduceType::MAX;
else if (op_type == "min")
reduce_type = ReduceType::MIN;
else if (op_type == "mean")
reduce_type = ReduceType::MEAN;
else if (op_type == "sum")
reduce_type = ReduceType::SUM;
else if (op_type == "sum_square")
reduce_type = ReduceType::SUM_SQUARE;
else if (op_type == "l1")
reduce_type = ReduceType::L1;
else if (op_type == "l2")
reduce_type = ReduceType::L2;
else if (op_type == "log_sum")
reduce_type = ReduceType::LOG_SUM;
else if (op_type == "log_sum_exp")
reduce_type = ReduceType::LOG_SUM_EXP;
else if (op_type == "prod")
reduce_type = ReduceType::PROD;
else
CV_Error(Error::StsBadArg, "Unknown reduce type\"" + op_type + "\"");
keepdims = params.get<bool>("keepdims", true);
noop_with_empty_axes = params.get<bool>("noop_with_empty_axes", false);
// get axes if it is existed, otherwise reduce all
if (params.has("axes")) {
auto param_axes = params.get("axes");
int num_axes = param_axes.size();
axes.resize(num_axes);
for (int i = 0; i < num_axes; ++i)
axes[i] = param_axes.get<int>(i);
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE {
return backendId == DNN_BACKEND_OPENCV;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE {
if (axes.empty()) {
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
auto shape_input = shape(inputs[0]);
for (auto i = 0; i < axes.size(); ++i) {
auto norm_axis = normalize_axis(axes[i], shape_input);
axes[i] = norm_axis;
}
bool do_nothing = true;
for (auto axis : axes) {
if (shape_input[axis] != 1) {
do_nothing = false;
}
}
if (do_nothing) {
axes.clear();
noop_with_empty_axes = true;
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
// empty axes
if (axes.empty()) {
if (noop_with_empty_axes) {
// do nothing
outputs.assign(1, inputs[0]);
} else {
// reduce all axes
MatShape shape_output;
if (keepdims) {
shape_output = inputs[0];
for (auto i = 0; i < shape_output.size(); ++i)
shape_output[i] = 1;
} else {
shape_output.push_back(1);
}
outputs.assign(1, shape_output);
}
} else {
auto shape_output_ = inputs[0];
for (size_t i = 0; i < axes.size(); ++i) {
auto norm_axis = normalize_axis(axes[i], inputs[0]);
shape_output_[norm_axis] = -1;
}
MatShape shape_output;
for (size_t i = 0; i < shape_output_.size(); ++i) {
if (shape_output_[i] == -1) {
if (keepdims)
shape_output.push_back(1);
else
continue;
} else
shape_output.push_back(shape_output_[i]);
}
if (shape_output.empty())
shape_output.push_back(1);
outputs.assign(1, shape_output);
}
return false;
}
template <typename T>
class ReduceBase {
public:
using dtype_input = T;
ReduceBase(size_t n, const T& init) : n_(n), accumulator_(init) {}
virtual void update(const T& a) = 0;
virtual T get_value() { return accumulator_; }
virtual ~ReduceBase() = default;
protected:
size_t n_;
T accumulator_;
};
template <typename T>
class ReduceMin : public ReduceBase<T> {
public:
ReduceMin(size_t n, const T& init) : ReduceBase<T>(n, init) {}
void update(const T& a) override {
this->accumulator_ = a > this->accumulator_ ? this->accumulator_ : a;
}
};
template <typename T>
class ReduceMax : public ReduceBase<T> {
public:
ReduceMax(size_t n, const T& init) : ReduceBase<T>(n, init) {}
void update(const T& a) override {
this->accumulator_ = a > this->accumulator_ ? a : this->accumulator_;
}
};
template <typename T>
class ReduceSum : public ReduceBase<T> {
public:
ReduceSum(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
void update(const T& a) override {
this->accumulator_ += a;
}
};
template <typename T>
class ReduceMean : public ReduceSum<T> {
public:
ReduceMean(size_t n, const T& init) : ReduceSum<T>(n, init) {}
T get_value() override {
return this->accumulator_ / static_cast<T>(this->n_);
}
};
template <typename T>
class ReduceSumSquare : public ReduceBase<T> {
public:
ReduceSumSquare(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
void update(const T& a) override {
this->accumulator_ += a * a;
}
};
template <typename T>
class ReduceL1 : public ReduceBase<T> {
public:
ReduceL1(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
void update(const T& a) override {
this->accumulator_ += a > 0 ? a : -a;
}
};
template <typename T>
class ReduceL2 : public ReduceBase<T> {
public:
ReduceL2(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
void update(const T& a) override {
this->accumulator_ += a * a;
}
T get_value() override {
return std::sqrt(this->accumulator_);
}
};
template <typename T>
class ReduceProd : public ReduceBase<T> {
public:
ReduceProd(size_t n, const T& init) : ReduceBase<T>(n, 1) {}
void update(const T& a) override {
this->accumulator_ *= a;
}
};
template <typename T>
class ReduceLogSum : public ReduceBase<T> {
public:
ReduceLogSum(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
void update(const T& a) override {
this->accumulator_ += a;
}
T get_value() override {
return static_cast<T>(std::log(this->accumulator_));
}
};
// FIXME: overflow caution
template <typename T>
class ReduceLogSumExp : public ReduceBase<T> {
public:
ReduceLogSumExp(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
void update(const T& a) override {
this->accumulator_ += static_cast<T>(std::exp(a));
}
T get_value() override {
return static_cast<T>(std::log(this->accumulator_));
}
};
template <typename Op>
class ReduceAllInvoker : public ParallelLoopBody {
public:
using dtype = typename Op::dtype_input;
const Mat& src;
Mat& dst;
int n_reduce;
int loop_size;
int total;
int cost_per_thread;
ReduceAllInvoker(const Mat& src_, Mat& dst_) : src(src_), dst(dst_) {
auto shape_src = shape(src);
n_reduce = std::accumulate(shape_src.begin(), shape_src.end(), 1, std::multiplies<int>());
loop_size = n_reduce;
total = 1;
cost_per_thread = 1;
}
void operator()(const Range& r) const CV_OVERRIDE {
int start = r.start;
int end = r.end;
const dtype* p_src = src.ptr<const dtype>();
dtype* p_dst = dst.ptr<dtype>();
for (int i = start; i < end; ++i) {
Op accumulator(n_reduce, *p_src);
for (int l = 0; l < loop_size; ++l) {
accumulator.update(p_src[l]);
}
p_dst[i] = accumulator.get_value();
}
}
};
template <typename Op>
class ReduceInvoker : public ParallelLoopBody {
public:
using dtype = typename Op::dtype_input;
const Mat& src;
Mat& dst;
std::vector<int> reduced_axes; // assume in ascending order
int n_reduce;
int loop_size;
int last_reduced_dim;
int last_reduced_step;
std::vector<int> projected_steps;
int last_unreduced_dim;
int last_unreduced_step;
std::vector<int> unprojected_steps;
int total;
int cost_per_thread;
ReduceInvoker(const Mat& src_, Mat& dst_, std::vector<int> axes_) : src(src_), dst(dst_), reduced_axes(axes_) {
auto shape_src = shape(src);
auto steps_src = shape_src;
steps_src[steps_src.size() - 1] = 1;
for (int i = static_cast<int>(steps_src.size()) - 2; i >= 0; --i)
steps_src[i] = steps_src[i + 1] * shape_src[i + 1];
size_t projection_size = 1;
for (auto axis : reduced_axes) {
projection_size *= shape_src[axis];
}
n_reduce = projection_size;
last_reduced_dim = shape_src[reduced_axes.back()];
last_reduced_step = steps_src[reduced_axes.back()];
loop_size = last_reduced_dim * last_reduced_step;
projection_size /= last_reduced_dim;
// calculate projected_steps
int last_reduced_axis = static_cast<int>(reduced_axes.size()) - 1;
if (last_reduced_axis == 0) {
projected_steps.resize(1, 0);
} else {
projected_steps.resize(projection_size);
std::vector<int> projected_indices(last_reduced_axis, 0);
for (size_t i = 0, current_step = 0; i < projection_size; ++i) {
projected_steps[i] = current_step;
++projected_indices[last_reduced_axis - 1];
current_step += steps_src[reduced_axes[last_reduced_axis - 1]];
for (int j = last_reduced_axis - 1; j > 0; --j) {
if (projected_indices[j] < shape_src[reduced_axes[j]]) {
break;
}
projected_indices[j] = 0;
++projected_indices[j - 1];
current_step = steps_src[reduced_axes[j - 1]];
}
}
}
// calculate unprojected_steps
std::vector<int> unreduced_axes;
for (int i = 0; i < static_cast<int>(shape_src.size()); ++i) {
if (std::find(reduced_axes.begin(), reduced_axes.end(), i) == reduced_axes.end()) {
unreduced_axes.push_back(i);
}
}
size_t unprojection_size = 1;
for (auto axis : unreduced_axes) {
unprojection_size *= shape_src[axis];
}
last_unreduced_dim = shape_src[unreduced_axes.back()];
last_unreduced_step = steps_src[unreduced_axes.back()];
unprojection_size /= last_unreduced_dim;
std::vector<int> unprojected_indices(unreduced_axes.size(), 0);
unprojected_steps.reserve(unprojection_size);
if (unprojected_indices.size() <= 1) {
unprojected_steps.push_back(0);
} else {
for (size_t i = 0, current_step = 0; i < unprojection_size; ++i) {
unprojected_steps.push_back(current_step);
++unprojected_indices[unprojected_indices.size() - 2];
current_step += steps_src[unreduced_axes[unreduced_axes.size() - 2]];
for (int j = static_cast<int>(unreduced_axes.size()) - 2; j > 0; --j) {
if (unprojected_indices[j] < shape_src[unreduced_axes[j]]) {
break;
}
unprojected_indices[j] -= shape_src[unreduced_axes[j]];
current_step -= shape_src[unreduced_axes[j]] * steps_src[unreduced_axes[j]];
++unprojected_indices[j - 1];
current_step += steps_src[unreduced_axes[j - 1]];
}
}
}
auto shape_dst = shape(dst);
total = std::accumulate(shape_dst.begin(), shape_dst.end(), 1, std::multiplies<int>());
cost_per_thread = static_cast<int>(projected_steps.size() * last_reduced_step);
}
static void run(const Mat& src, Mat& dst, std::vector<int> axes, bool noop_with_empty_axes) {
CV_Assert(src.isContinuous());
CV_Assert(dst.isContinuous());
if (axes.empty()) {
if (noop_with_empty_axes) {
// copyTo is not used here for the reason that we want a
// copy for the case when dims at all axes are 1
const auto p_src = src.ptr<const dtype>();
auto p_dst = dst.ptr<dtype>();
std::memcpy(p_dst, p_src, sizeof(dtype) * dst.total());
return;
}
ReduceAllInvoker<Op> p(src, dst);
double nstripes = (size_t)p.total * (size_t)p.cost_per_thread * (1 / 1024.0);
parallel_for_(Range(0, p.total), p, nstripes);
return;
}
ReduceInvoker<Op> p(src, dst, axes);
double nstripes = (size_t)p.total * (size_t)p.cost_per_thread * (1 / 1024.0);
parallel_for_(Range(0, p.total), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE {
int start = r.start;
int end = r.end;
const dtype* p_src = src.ptr<const dtype>();
dtype* p_dst = dst.ptr<dtype>();
size_t main_index = start / last_unreduced_dim;
size_t loop = start % last_unreduced_dim;
size_t origin = unprojected_steps[main_index] + loop * last_unreduced_step;
for (int i = start; i < end; ++i) {
Op accumulator(n_reduce, p_src[origin + projected_steps[0]]);
for (auto projected_step : projected_steps) {
const dtype* loop_p_src = p_src + origin + projected_step;
for (auto l = 0; l < loop_size; l += last_reduced_step) {
accumulator.update(loop_p_src[l]);
}
}
p_dst[i] = accumulator.get_value();
++loop;
if (loop >= last_unreduced_dim) {
loop = 0;
++main_index;
if (main_index < unprojected_steps.size()) {
origin = unprojected_steps[main_index];
}
} else {
origin += last_unreduced_step;
}
}
}
};
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (inputs_arr.depth() == CV_16F)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
typeDispatch(outputs[0].type(), inputs[0], outputs[0], axes, noop_with_empty_axes);
}
template <typename T, typename... Args>
inline void opDispatch(Args&&... args) {
switch (reduce_type) {
case ReduceType::MAX: ReduceInvoker<ReduceMax<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::MIN: ReduceInvoker<ReduceMin<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::MEAN: ReduceInvoker<ReduceMean<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::SUM: ReduceInvoker<ReduceSum<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::L1: ReduceInvoker<ReduceL1<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::L2: ReduceInvoker<ReduceL2<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::PROD: ReduceInvoker<ReduceProd<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::SUM_SQUARE: ReduceInvoker<ReduceSumSquare<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::LOG_SUM: ReduceInvoker<ReduceLogSum<T>>::run(std::forward<Args>(args)...); break;
case ReduceType::LOG_SUM_EXP: ReduceInvoker<ReduceLogSumExp<T>>::run(std::forward<Args>(args)...); break;
default: CV_Error(Error::StsBadArg, "DNN/Reduce: Unsupported operation.");
}
}
template <typename... Args>
inline void typeDispatch(const int type, Args&&... args) {
switch (type) {
case CV_8U: opDispatch<uint8_t>(std::forward<Args>(args)...); break;
case CV_32S: opDispatch<int32_t>(std::forward<Args>(args)...); break;
case CV_32F: opDispatch<float>(std::forward<Args>(args)...); break;
default: CV_Error(cv::Error::BadDepth, "DNN/Reduce: Unsupported type.");
}
}
private:
enum ReduceType
{
MAX,
MIN,
MEAN,
SUM,
L1,
L2,
PROD,
SUM_SQUARE,
LOG_SUM,
LOG_SUM_EXP
} reduce_type;
bool keepdims;
bool noop_with_empty_axes;
std::vector<int> axes;
};
Ptr<ReduceLayer> ReduceLayer::create(const LayerParams& params)
{
return Ptr<ReduceLayer>(new ReduceLayerImpl(params));
}
}} // cv::dnn