mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00

Fixed ReduceMean layer behaviour #25120
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
526 lines
18 KiB
C++
526 lines
18 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "../precomp.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class ReduceLayerImpl CV_FINAL : public ReduceLayer
|
|
{
|
|
public:
|
|
ReduceLayerImpl(const LayerParams& params) {
|
|
setParamsFrom(params);
|
|
|
|
// set reduce type
|
|
CV_Assert(params.has("reduce"));
|
|
String op_type = toLowerCase(params.get<String>("reduce"));
|
|
if (op_type == "max")
|
|
reduce_type = ReduceType::MAX;
|
|
else if (op_type == "min")
|
|
reduce_type = ReduceType::MIN;
|
|
else if (op_type == "mean")
|
|
reduce_type = ReduceType::MEAN;
|
|
else if (op_type == "sum")
|
|
reduce_type = ReduceType::SUM;
|
|
else if (op_type == "sum_square")
|
|
reduce_type = ReduceType::SUM_SQUARE;
|
|
else if (op_type == "l1")
|
|
reduce_type = ReduceType::L1;
|
|
else if (op_type == "l2")
|
|
reduce_type = ReduceType::L2;
|
|
else if (op_type == "log_sum")
|
|
reduce_type = ReduceType::LOG_SUM;
|
|
else if (op_type == "log_sum_exp")
|
|
reduce_type = ReduceType::LOG_SUM_EXP;
|
|
else if (op_type == "prod")
|
|
reduce_type = ReduceType::PROD;
|
|
else
|
|
CV_Error(Error::StsBadArg, "Unknown reduce type\"" + op_type + "\"");
|
|
|
|
keepdims = params.get<bool>("keepdims", true);
|
|
noop_with_empty_axes = params.get<bool>("noop_with_empty_axes", false);
|
|
|
|
// get axes if it is existed, otherwise reduce all
|
|
if (params.has("axes")) {
|
|
auto param_axes = params.get("axes");
|
|
int num_axes = param_axes.size();
|
|
axes.resize(num_axes);
|
|
for (int i = 0; i < num_axes; ++i)
|
|
axes[i] = param_axes.get<int>(i);
|
|
}
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE {
|
|
return backendId == DNN_BACKEND_OPENCV;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE {
|
|
if (axes.empty()) {
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
auto shape_input = shape(inputs[0]);
|
|
for (auto i = 0; i < axes.size(); ++i) {
|
|
auto norm_axis = normalize_axis(axes[i], shape_input);
|
|
axes[i] = norm_axis;
|
|
}
|
|
|
|
bool do_nothing = true;
|
|
for (auto axis : axes) {
|
|
if (shape_input[axis] != 1) {
|
|
do_nothing = false;
|
|
}
|
|
}
|
|
if (do_nothing) {
|
|
axes.clear();
|
|
noop_with_empty_axes = true;
|
|
}
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
// empty axes
|
|
if (axes.empty()) {
|
|
if (noop_with_empty_axes) {
|
|
// do nothing
|
|
outputs.assign(1, inputs[0]);
|
|
} else {
|
|
// reduce all axes
|
|
MatShape shape_output;
|
|
if (keepdims) {
|
|
shape_output = inputs[0];
|
|
for (auto i = 0; i < shape_output.size(); ++i)
|
|
shape_output[i] = 1;
|
|
} else {
|
|
shape_output.push_back(1);
|
|
}
|
|
outputs.assign(1, shape_output);
|
|
}
|
|
} else {
|
|
auto shape_output_ = inputs[0];
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
auto norm_axis = normalize_axis(axes[i], inputs[0]);
|
|
shape_output_[norm_axis] = -1;
|
|
}
|
|
MatShape shape_output;
|
|
for (size_t i = 0; i < shape_output_.size(); ++i) {
|
|
if (shape_output_[i] == -1) {
|
|
if (keepdims)
|
|
shape_output.push_back(1);
|
|
else
|
|
continue;
|
|
} else
|
|
shape_output.push_back(shape_output_[i]);
|
|
}
|
|
if (shape_output.empty())
|
|
shape_output.push_back(1);
|
|
|
|
outputs.assign(1, shape_output);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename T>
|
|
class ReduceBase {
|
|
public:
|
|
using dtype_input = T;
|
|
|
|
ReduceBase(size_t n, const T& init) : n_(n), accumulator_(init) {}
|
|
virtual void update(const T& a) = 0;
|
|
virtual T get_value() { return accumulator_; }
|
|
virtual ~ReduceBase() = default;
|
|
protected:
|
|
size_t n_;
|
|
T accumulator_;
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceMin : public ReduceBase<T> {
|
|
public:
|
|
ReduceMin(size_t n, const T& init) : ReduceBase<T>(n, init) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ = a > this->accumulator_ ? this->accumulator_ : a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceMax : public ReduceBase<T> {
|
|
public:
|
|
ReduceMax(size_t n, const T& init) : ReduceBase<T>(n, init) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ = a > this->accumulator_ ? a : this->accumulator_;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceSum : public ReduceBase<T> {
|
|
public:
|
|
ReduceSum(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ += a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceMean : public ReduceSum<T> {
|
|
public:
|
|
ReduceMean(size_t n, const T& init) : ReduceSum<T>(n, init) {}
|
|
T get_value() override {
|
|
return this->accumulator_ / static_cast<T>(this->n_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceSumSquare : public ReduceBase<T> {
|
|
public:
|
|
ReduceSumSquare(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ += a * a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceL1 : public ReduceBase<T> {
|
|
public:
|
|
ReduceL1(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ += a > 0 ? a : -a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceL2 : public ReduceBase<T> {
|
|
public:
|
|
ReduceL2(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ += a * a;
|
|
}
|
|
T get_value() override {
|
|
return std::sqrt(this->accumulator_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceProd : public ReduceBase<T> {
|
|
public:
|
|
ReduceProd(size_t n, const T& init) : ReduceBase<T>(n, 1) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ *= a;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ReduceLogSum : public ReduceBase<T> {
|
|
public:
|
|
ReduceLogSum(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ += a;
|
|
}
|
|
T get_value() override {
|
|
return static_cast<T>(std::log(this->accumulator_));
|
|
}
|
|
};
|
|
|
|
// FIXME: overflow caution
|
|
template <typename T>
|
|
class ReduceLogSumExp : public ReduceBase<T> {
|
|
public:
|
|
ReduceLogSumExp(size_t n, const T& init) : ReduceBase<T>(n, 0) {}
|
|
void update(const T& a) override {
|
|
this->accumulator_ += static_cast<T>(std::exp(a));
|
|
}
|
|
T get_value() override {
|
|
return static_cast<T>(std::log(this->accumulator_));
|
|
}
|
|
};
|
|
|
|
|
|
template <typename Op>
|
|
class ReduceAllInvoker : public ParallelLoopBody {
|
|
public:
|
|
using dtype = typename Op::dtype_input;
|
|
|
|
const Mat& src;
|
|
Mat& dst;
|
|
|
|
int n_reduce;
|
|
int loop_size;
|
|
|
|
int total;
|
|
int cost_per_thread;
|
|
|
|
ReduceAllInvoker(const Mat& src_, Mat& dst_) : src(src_), dst(dst_) {
|
|
auto shape_src = shape(src);
|
|
|
|
n_reduce = std::accumulate(shape_src.begin(), shape_src.end(), 1, std::multiplies<int>());
|
|
loop_size = n_reduce;
|
|
|
|
total = 1;
|
|
cost_per_thread = 1;
|
|
}
|
|
|
|
void operator()(const Range& r) const CV_OVERRIDE {
|
|
int start = r.start;
|
|
int end = r.end;
|
|
|
|
const dtype* p_src = src.ptr<const dtype>();
|
|
dtype* p_dst = dst.ptr<dtype>();
|
|
|
|
for (int i = start; i < end; ++i) {
|
|
Op accumulator(n_reduce, *p_src);
|
|
for (int l = 0; l < loop_size; ++l) {
|
|
accumulator.update(p_src[l]);
|
|
}
|
|
p_dst[i] = accumulator.get_value();
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Op>
|
|
class ReduceInvoker : public ParallelLoopBody {
|
|
public:
|
|
using dtype = typename Op::dtype_input;
|
|
|
|
const Mat& src;
|
|
Mat& dst;
|
|
|
|
std::vector<int> reduced_axes; // assume in ascending order
|
|
|
|
int n_reduce;
|
|
int loop_size;
|
|
|
|
int last_reduced_dim;
|
|
int last_reduced_step;
|
|
std::vector<int> projected_steps;
|
|
|
|
int last_unreduced_dim;
|
|
int last_unreduced_step;
|
|
std::vector<int> unprojected_steps;
|
|
|
|
int total;
|
|
int cost_per_thread;
|
|
|
|
ReduceInvoker(const Mat& src_, Mat& dst_, std::vector<int> axes_) : src(src_), dst(dst_), reduced_axes(axes_) {
|
|
auto shape_src = shape(src);
|
|
|
|
auto steps_src = shape_src;
|
|
steps_src[steps_src.size() - 1] = 1;
|
|
for (int i = static_cast<int>(steps_src.size()) - 2; i >= 0; --i)
|
|
steps_src[i] = steps_src[i + 1] * shape_src[i + 1];
|
|
|
|
size_t projection_size = 1;
|
|
for (auto axis : reduced_axes) {
|
|
projection_size *= shape_src[axis];
|
|
}
|
|
n_reduce = projection_size;
|
|
|
|
last_reduced_dim = shape_src[reduced_axes.back()];
|
|
last_reduced_step = steps_src[reduced_axes.back()];
|
|
loop_size = last_reduced_dim * last_reduced_step;
|
|
projection_size /= last_reduced_dim;
|
|
|
|
// calculate projected_steps
|
|
int last_reduced_axis = static_cast<int>(reduced_axes.size()) - 1;
|
|
if (last_reduced_axis == 0) {
|
|
projected_steps.resize(1, 0);
|
|
} else {
|
|
projected_steps.resize(projection_size);
|
|
std::vector<int> projected_indices(last_reduced_axis, 0);
|
|
for (size_t i = 0, current_step = 0; i < projection_size; ++i) {
|
|
projected_steps[i] = current_step;
|
|
++projected_indices[last_reduced_axis - 1];
|
|
current_step += steps_src[reduced_axes[last_reduced_axis - 1]];
|
|
for (int j = last_reduced_axis - 1; j > 0; --j) {
|
|
if (projected_indices[j] < shape_src[reduced_axes[j]]) {
|
|
break;
|
|
}
|
|
projected_indices[j] = 0;
|
|
++projected_indices[j - 1];
|
|
current_step = steps_src[reduced_axes[j - 1]];
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate unprojected_steps
|
|
std::vector<int> unreduced_axes;
|
|
for (int i = 0; i < static_cast<int>(shape_src.size()); ++i) {
|
|
if (std::find(reduced_axes.begin(), reduced_axes.end(), i) == reduced_axes.end()) {
|
|
unreduced_axes.push_back(i);
|
|
}
|
|
}
|
|
size_t unprojection_size = 1;
|
|
for (auto axis : unreduced_axes) {
|
|
unprojection_size *= shape_src[axis];
|
|
}
|
|
last_unreduced_dim = shape_src[unreduced_axes.back()];
|
|
last_unreduced_step = steps_src[unreduced_axes.back()];
|
|
unprojection_size /= last_unreduced_dim;
|
|
|
|
std::vector<int> unprojected_indices(unreduced_axes.size(), 0);
|
|
unprojected_steps.reserve(unprojection_size);
|
|
if (unprojected_indices.size() <= 1) {
|
|
unprojected_steps.push_back(0);
|
|
} else {
|
|
for (size_t i = 0, current_step = 0; i < unprojection_size; ++i) {
|
|
unprojected_steps.push_back(current_step);
|
|
++unprojected_indices[unprojected_indices.size() - 2];
|
|
current_step += steps_src[unreduced_axes[unreduced_axes.size() - 2]];
|
|
for (int j = static_cast<int>(unreduced_axes.size()) - 2; j > 0; --j) {
|
|
if (unprojected_indices[j] < shape_src[unreduced_axes[j]]) {
|
|
break;
|
|
}
|
|
unprojected_indices[j] -= shape_src[unreduced_axes[j]];
|
|
current_step -= shape_src[unreduced_axes[j]] * steps_src[unreduced_axes[j]];
|
|
++unprojected_indices[j - 1];
|
|
current_step += steps_src[unreduced_axes[j - 1]];
|
|
}
|
|
}
|
|
}
|
|
|
|
auto shape_dst = shape(dst);
|
|
total = std::accumulate(shape_dst.begin(), shape_dst.end(), 1, std::multiplies<int>());
|
|
cost_per_thread = static_cast<int>(projected_steps.size() * last_reduced_step);
|
|
}
|
|
|
|
static void run(const Mat& src, Mat& dst, std::vector<int> axes, bool noop_with_empty_axes) {
|
|
CV_Assert(src.isContinuous());
|
|
CV_Assert(dst.isContinuous());
|
|
|
|
if (axes.empty()) {
|
|
if (noop_with_empty_axes) {
|
|
// copyTo is not used here for the reason that we want a
|
|
// copy for the case when dims at all axes are 1
|
|
const auto p_src = src.ptr<const dtype>();
|
|
auto p_dst = dst.ptr<dtype>();
|
|
std::memcpy(p_dst, p_src, sizeof(dtype) * dst.total());
|
|
return;
|
|
}
|
|
|
|
ReduceAllInvoker<Op> p(src, dst);
|
|
double nstripes = (size_t)p.total * (size_t)p.cost_per_thread * (1 / 1024.0);
|
|
parallel_for_(Range(0, p.total), p, nstripes);
|
|
return;
|
|
}
|
|
|
|
ReduceInvoker<Op> p(src, dst, axes);
|
|
double nstripes = (size_t)p.total * (size_t)p.cost_per_thread * (1 / 1024.0);
|
|
parallel_for_(Range(0, p.total), p, nstripes);
|
|
}
|
|
|
|
void operator()(const Range& r) const CV_OVERRIDE {
|
|
int start = r.start;
|
|
int end = r.end;
|
|
|
|
const dtype* p_src = src.ptr<const dtype>();
|
|
dtype* p_dst = dst.ptr<dtype>();
|
|
|
|
size_t main_index = start / last_unreduced_dim;
|
|
size_t loop = start % last_unreduced_dim;
|
|
size_t origin = unprojected_steps[main_index] + loop * last_unreduced_step;
|
|
for (int i = start; i < end; ++i) {
|
|
Op accumulator(n_reduce, p_src[origin + projected_steps[0]]);
|
|
for (auto projected_step : projected_steps) {
|
|
const dtype* loop_p_src = p_src + origin + projected_step;
|
|
for (auto l = 0; l < loop_size; l += last_reduced_step) {
|
|
accumulator.update(loop_p_src[l]);
|
|
}
|
|
}
|
|
p_dst[i] = accumulator.get_value();
|
|
|
|
++loop;
|
|
if (loop >= last_unreduced_dim) {
|
|
loop = 0;
|
|
++main_index;
|
|
if (main_index < unprojected_steps.size()) {
|
|
origin = unprojected_steps[main_index];
|
|
}
|
|
} else {
|
|
origin += last_unreduced_step;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
if (inputs_arr.depth() == CV_16F)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
typeDispatch(outputs[0].type(), inputs[0], outputs[0], axes, noop_with_empty_axes);
|
|
}
|
|
|
|
template <typename T, typename... Args>
|
|
inline void opDispatch(Args&&... args) {
|
|
switch (reduce_type) {
|
|
case ReduceType::MAX: ReduceInvoker<ReduceMax<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::MIN: ReduceInvoker<ReduceMin<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::MEAN: ReduceInvoker<ReduceMean<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::SUM: ReduceInvoker<ReduceSum<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::L1: ReduceInvoker<ReduceL1<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::L2: ReduceInvoker<ReduceL2<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::PROD: ReduceInvoker<ReduceProd<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::SUM_SQUARE: ReduceInvoker<ReduceSumSquare<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::LOG_SUM: ReduceInvoker<ReduceLogSum<T>>::run(std::forward<Args>(args)...); break;
|
|
case ReduceType::LOG_SUM_EXP: ReduceInvoker<ReduceLogSumExp<T>>::run(std::forward<Args>(args)...); break;
|
|
default: CV_Error(Error::StsBadArg, "DNN/Reduce: Unsupported operation.");
|
|
}
|
|
}
|
|
|
|
template <typename... Args>
|
|
inline void typeDispatch(const int type, Args&&... args) {
|
|
switch (type) {
|
|
case CV_8U: opDispatch<uint8_t>(std::forward<Args>(args)...); break;
|
|
case CV_32S: opDispatch<int32_t>(std::forward<Args>(args)...); break;
|
|
case CV_32F: opDispatch<float>(std::forward<Args>(args)...); break;
|
|
default: CV_Error(cv::Error::BadDepth, "DNN/Reduce: Unsupported type.");
|
|
}
|
|
}
|
|
|
|
private:
|
|
enum ReduceType
|
|
{
|
|
MAX,
|
|
MIN,
|
|
MEAN,
|
|
SUM,
|
|
L1,
|
|
L2,
|
|
PROD,
|
|
SUM_SQUARE,
|
|
LOG_SUM,
|
|
LOG_SUM_EXP
|
|
} reduce_type;
|
|
|
|
bool keepdims;
|
|
bool noop_with_empty_axes;
|
|
std::vector<int> axes;
|
|
};
|
|
|
|
Ptr<ReduceLayer> ReduceLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<ReduceLayer>(new ReduceLayerImpl(params));
|
|
}
|
|
|
|
}} // cv::dnn
|