mirror of
https://github.com/opencv/opencv.git
synced 2025-06-13 04:52:53 +08:00
291 lines
9.6 KiB
C++
291 lines
9.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2019-2020 Intel Corporation
|
|
|
|
|
|
#ifdef HAVE_PLAIDML
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <ade/util/algorithm.hpp>
|
|
#include <ade/util/range.hpp>
|
|
#include <ade/util/zip_range.hpp>
|
|
#include <ade/typed_graph.hpp>
|
|
|
|
#include <opencv2/gapi/gcommon.hpp>
|
|
#include <opencv2/gapi/util/any.hpp>
|
|
#include <opencv2/gapi/gtype_traits.hpp>
|
|
#include <opencv2/gapi/plaidml/plaidml.hpp>
|
|
|
|
#include "compiler/gobjref.hpp"
|
|
#include "compiler/gmodel.hpp"
|
|
|
|
#include "backends/plaidml/gplaidmlbackend.hpp"
|
|
#include "backends/plaidml/plaidml_util.hpp"
|
|
|
|
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
|
|
|
|
using GPlaidMLModel = ade::TypedGraph
|
|
< cv::gimpl::PlaidMLUnit
|
|
, cv::gimpl::Protocol
|
|
>;
|
|
|
|
// FIXME: Same issue with Typed and ConstTyped
|
|
using GConstGPlaidMLModel = ade::ConstTypedGraph
|
|
< cv::gimpl::PlaidMLUnit
|
|
, cv::gimpl::Protocol
|
|
>;
|
|
|
|
namespace
|
|
{
|
|
class GPlaidMLBackendImpl final: public cv::gapi::GBackend::Priv
|
|
{
|
|
virtual void unpackKernel(ade::Graph &graph,
|
|
const ade::NodeHandle &op_node,
|
|
const cv::GKernelImpl &impl) override
|
|
{
|
|
GPlaidMLModel gm(graph);
|
|
auto plaidml_impl = cv::util::any_cast<cv::GPlaidMLKernel>(impl.opaque);
|
|
gm.metadata(op_node).set(cv::gimpl::PlaidMLUnit{plaidml_impl});
|
|
}
|
|
|
|
virtual EPtr compile(const ade::Graph& graph,
|
|
const cv::GCompileArgs& args,
|
|
const std::vector<ade::NodeHandle>& nodes,
|
|
const std::vector<cv::gimpl::Data>& ins_data,
|
|
const std::vector<cv::gimpl::Data>& outs_data) const override
|
|
{
|
|
auto has_config = cv::gapi::getCompileArg<cv::gapi::plaidml::config>(args);
|
|
|
|
if (!has_config)
|
|
{
|
|
cv::util::throw_error(std::runtime_error("Config not found!\n"
|
|
"You must pass cv::gapi::plaidml::config to the graph compile arguments"));
|
|
}
|
|
|
|
const auto& arg = has_config.value();
|
|
return EPtr{new cv::gimpl::GPlaidMLExecutable(cv::gimpl::GPlaidMLExecutable::Config{arg.dev_id, arg.trg_id},
|
|
graph, nodes, ins_data, outs_data)};
|
|
}
|
|
};
|
|
}
|
|
|
|
cv::gapi::GBackend cv::gapi::plaidml::backend()
|
|
{
|
|
static cv::gapi::GBackend this_backend(std::make_shared<GPlaidMLBackendImpl>());
|
|
return this_backend;
|
|
}
|
|
|
|
void cv::gimpl::GPlaidMLExecutable::initBuffers(const std::vector<cv::gimpl::Data>& data,
|
|
std::vector<plaidml::exec::Binding>& bindings)
|
|
{
|
|
|
|
// NB: This is necessary because we keep a pointer to bindings elements to buffer_map
|
|
// In order to them to remain valid it's required to prevant reallocation
|
|
bindings.reserve(data.size());
|
|
for (const auto& d : data)
|
|
{
|
|
GAPI_Assert(d.shape == GShape::GMAT &&
|
|
"Now PlaidML backend supports only cv::GMat's");
|
|
|
|
const auto& desc = cv::util::get<cv::GMatDesc>(d.meta);
|
|
|
|
auto placeholder = plaidml::edsl::Placeholder(
|
|
cv::util::plaidml::depth_from_ocv(desc.depth),
|
|
{desc.size.width, desc.size.height, desc.chan});
|
|
|
|
const auto& shape = placeholder.shape();
|
|
plaidml::TensorShape tshape(shape.dtype(), shape.int_dims());
|
|
plaidml::Buffer buffer(m_cfg.dev_id, tshape);
|
|
|
|
bindings.push_back(plaidml::exec::Binding{std::move(placeholder),
|
|
std::move(buffer)});
|
|
|
|
auto& tensor_map = m_res.slot<plaidml::edsl::Tensor>();
|
|
// FIXME Avoid Copy here !!!
|
|
tensor_map.emplace(d.rc, bindings.back().tensor);
|
|
|
|
auto& buffer_map = m_res.slot<plaidml::Buffer*>();
|
|
buffer_map.emplace(d.rc, &(bindings.back().buffer));
|
|
}
|
|
}
|
|
|
|
void cv::gimpl::GPlaidMLExecutable::compile(const std::vector<cv::gimpl::Data>& ins_data,
|
|
const std::vector<cv::gimpl::Data>& outs_data)
|
|
{
|
|
initBuffers(ins_data, input_bindings_);
|
|
initBuffers(outs_data, output_bindings_);
|
|
|
|
ade::util::transform(outs_data, std::back_inserter(output_ids_),
|
|
[](const cv::gimpl::Data& d) { return d.rc; });
|
|
|
|
GConstGPlaidMLModel gcm(m_g);
|
|
for (const auto& nh : m_all_ops)
|
|
{
|
|
const auto& k = gcm.metadata(nh).get<PlaidMLUnit>().k;
|
|
GPlaidMLContext ctx;
|
|
|
|
const auto &op = m_gm.metadata(nh).get<Op>();
|
|
ctx.m_args.reserve(op.args.size());
|
|
|
|
using namespace std::placeholders;
|
|
ade::util::transform(op.args,
|
|
std::back_inserter(ctx.m_args),
|
|
std::bind(&GPlaidMLExecutable::packArg, this, _1));
|
|
|
|
for (const auto &out_it : ade::util::indexed(op.outs))
|
|
{
|
|
const auto out_port = ade::util::index(out_it);
|
|
const auto out_desc = ade::util::value(out_it);
|
|
|
|
auto& tensor_map = m_res.slot<plaidml::edsl::Tensor>();
|
|
|
|
// NB: Create tensor if need
|
|
auto& tensor = tensor_map[out_desc.id];
|
|
ctx.m_results[out_port] = GArg(&(tensor));
|
|
}
|
|
|
|
k.apply(ctx);
|
|
}
|
|
|
|
std::vector<plaidml::edsl::Tensor> output_tensors;
|
|
for (const auto& out_id : output_ids_)
|
|
{
|
|
auto& tensor_map = m_res.slot<plaidml::edsl::Tensor>();
|
|
// FIXME Avoid copy here !!!
|
|
output_tensors.emplace_back(tensor_map[out_id]);
|
|
}
|
|
|
|
plaidml::edsl::Program program("Program", output_tensors);
|
|
binder_.reset(new plaidml::exec::Binder(program));
|
|
|
|
for (const auto& binding : input_bindings_)
|
|
{
|
|
binder_->set_input(binding.tensor, binding.buffer);
|
|
}
|
|
|
|
for (const auto& binding : output_bindings_)
|
|
{
|
|
binder_->set_output(binding.tensor, binding.buffer);
|
|
}
|
|
|
|
exec_ = binder_->compile();
|
|
}
|
|
|
|
cv::gimpl::GPlaidMLExecutable::GPlaidMLExecutable(cv::gimpl::GPlaidMLExecutable::Config cfg,
|
|
const ade::Graph& g,
|
|
const std::vector<ade::NodeHandle>& nodes,
|
|
const std::vector<cv::gimpl::Data>& ins_data,
|
|
const std::vector<cv::gimpl::Data>& outs_data)
|
|
: m_cfg(std::move(cfg)), m_g(g), m_gm(m_g)
|
|
{
|
|
auto is_op = [&](ade::NodeHandle nh) {
|
|
return m_gm.metadata(nh).get<NodeType>().t == NodeType::OP;
|
|
};
|
|
|
|
std::copy_if(nodes.begin(), nodes.end(), std::back_inserter(m_all_ops), is_op);
|
|
|
|
compile(ins_data, outs_data);
|
|
}
|
|
|
|
void cv::gimpl::GPlaidMLExecutable::run(std::vector<InObj> &&input_objs,
|
|
std::vector<OutObj> &&output_objs)
|
|
{
|
|
for (auto& it : input_objs) bindInArg (it.first, it.second);
|
|
|
|
exec_->run();
|
|
|
|
for (auto& it : output_objs) bindOutArg(it.first, it.second);
|
|
}
|
|
|
|
void cv::gimpl::GPlaidMLExecutable::bindInArg(const RcDesc &rc, const GRunArg &arg)
|
|
{
|
|
switch (rc.shape)
|
|
{
|
|
case GShape::GMAT:
|
|
{
|
|
auto& tensor_map = m_res.slot<plaidml::edsl::Tensor>();
|
|
auto it = tensor_map.find(rc.id);
|
|
GAPI_Assert(it != tensor_map.end());
|
|
|
|
switch (arg.index())
|
|
{
|
|
case GRunArg::index_of<cv::Mat>() :
|
|
{
|
|
auto& arg_mat = util::get<cv::Mat>(arg);
|
|
binder_->input(it->second).copy_from(arg_mat.data);
|
|
}
|
|
break;
|
|
default: util::throw_error(std::logic_error("content type of the runtime argument does not match to resource description ?"));
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
util::throw_error(std::logic_error("Unsupported GShape type"));
|
|
}
|
|
}
|
|
|
|
void cv::gimpl::GPlaidMLExecutable::bindOutArg(const RcDesc &rc, const GRunArgP &arg)
|
|
{
|
|
switch (rc.shape)
|
|
{
|
|
case GShape::GMAT:
|
|
{
|
|
auto& tensor_map = m_res.slot<plaidml::edsl::Tensor>();
|
|
auto it = tensor_map.find(rc.id);
|
|
GAPI_Assert(it != tensor_map.end());
|
|
|
|
switch (arg.index())
|
|
{
|
|
case GRunArgP::index_of<cv::Mat*>() :
|
|
{
|
|
auto& arg_mat = *util::get<cv::Mat*>(arg);
|
|
binder_->output(it->second).copy_into(arg_mat.data);
|
|
}
|
|
break;
|
|
default: util::throw_error(std::logic_error("content type of the runtime argument does not match to resource description ?"));
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
util::throw_error(std::logic_error("Unsupported GShape type"));
|
|
}
|
|
}
|
|
|
|
cv::GArg cv::gimpl::GPlaidMLExecutable::packArg(const GArg &arg)
|
|
{
|
|
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
|
|
&& arg.kind != cv::detail::ArgKind::GSCALAR
|
|
&& arg.kind != cv::detail::ArgKind::GARRAY
|
|
&& arg.kind != cv::detail::ArgKind::GOPAQUE);
|
|
|
|
if (arg.kind != cv::detail::ArgKind::GOBJREF)
|
|
{
|
|
// All other cases - pass as-is, with no transformations to GArg contents.
|
|
return arg;
|
|
}
|
|
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
|
|
|
|
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
|
|
switch (ref.shape)
|
|
{
|
|
case GShape::GMAT:
|
|
{
|
|
auto& tensor_map = m_res.slot<plaidml::edsl::Tensor>();
|
|
auto it = tensor_map.find(ref.id);
|
|
GAPI_Assert(it != tensor_map.end());
|
|
return GArg(it->second);
|
|
}
|
|
break;
|
|
default:
|
|
util::throw_error(std::logic_error("Unsupported GShape type"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif // HAVE_PLAIDML
|