mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
827 lines
18 KiB
C++
827 lines
18 KiB
C++
#include <stdexcept>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/calib3d/calib3d.hpp>
|
|
#include <opencv2/gpu/gpu.hpp>
|
|
#include "performance.h"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
void InitMatchTemplate()
|
|
{
|
|
Mat src; gen(src, 500, 500, CV_32F, 0, 1);
|
|
Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
|
|
gpu::GpuMat d_src(src), d_templ(templ), d_dst;
|
|
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
|
|
}
|
|
|
|
|
|
TEST(matchTemplate)
|
|
{
|
|
InitMatchTemplate();
|
|
|
|
Mat src, templ, dst;
|
|
gen(src, 3000, 3000, CV_32F, 0, 1);
|
|
|
|
gpu::GpuMat d_src(src), d_templ, d_dst;
|
|
|
|
for (int templ_size = 5; templ_size < 200; templ_size *= 5)
|
|
{
|
|
SUBTEST << "src " << src.rows << ", templ " << templ_size << ", 32F, CCORR";
|
|
|
|
gen(templ, templ_size, templ_size, CV_32F, 0, 1);
|
|
dst.create(src.rows - templ.rows + 1, src.cols - templ.cols + 1, CV_32F);
|
|
|
|
CPU_ON;
|
|
matchTemplate(src, templ, dst, CV_TM_CCORR);
|
|
CPU_OFF;
|
|
|
|
d_templ = templ;
|
|
d_dst.create(d_src.rows - d_templ.rows + 1, d_src.cols - d_templ.cols + 1, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(minMaxLoc)
|
|
{
|
|
Mat src;
|
|
gpu::GpuMat d_src;
|
|
|
|
double min_val, max_val;
|
|
Point min_loc, max_loc;
|
|
|
|
for (int size = 2000; size <= 8000; size *= 2)
|
|
{
|
|
SUBTEST << "src " << size << ", 32F, no mask";
|
|
|
|
gen(src, size, size, CV_32F, 0, 1);
|
|
|
|
CPU_ON;
|
|
minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
|
|
GPU_ON;
|
|
gpu::minMaxLoc(d_src, &min_val, &max_val, &min_loc, &max_loc);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(remap)
|
|
{
|
|
Mat src, dst, xmap, ymap;
|
|
gpu::GpuMat d_src, d_dst, d_xmap, d_ymap;
|
|
|
|
for (int size = 1000; size <= 8000; size *= 2)
|
|
{
|
|
SUBTEST << "src " << size << " and 8U, 32F maps";
|
|
|
|
gen(src, size, size, CV_8UC1, 0, 256);
|
|
|
|
xmap.create(size, size, CV_32F);
|
|
ymap.create(size, size, CV_32F);
|
|
for (int i = 0; i < size; ++i)
|
|
{
|
|
float* xmap_row = xmap.ptr<float>(i);
|
|
float* ymap_row = ymap.ptr<float>(i);
|
|
for (int j = 0; j < size; ++j)
|
|
{
|
|
xmap_row[j] = (j - size * 0.5f) * 0.75f + size * 0.5f;
|
|
ymap_row[j] = (i - size * 0.5f) * 0.75f + size * 0.5f;
|
|
}
|
|
}
|
|
|
|
dst.create(xmap.size(), src.type());
|
|
|
|
CPU_ON;
|
|
remap(src, dst, xmap, ymap, INTER_LINEAR);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_xmap = xmap;
|
|
d_ymap = ymap;
|
|
d_dst.create(d_xmap.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::remap(d_src, d_dst, d_xmap, d_ymap);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(dft)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 1000; size <= 4000; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 32FC2, complex-to-complex";
|
|
|
|
gen(src, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
dft(src, dst);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(d_src.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::dft(d_src, d_dst, Size(size, size));
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(cornerHarris)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F";
|
|
|
|
gen(src, size, size, CV_32F, 0, 1);
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT101);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(src.size(), src.type());
|
|
|
|
GPU_ON;
|
|
gpu::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT101);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(integral)
|
|
{
|
|
Mat src, sum;
|
|
gpu::GpuMat d_src, d_sum, d_buf;
|
|
|
|
int size = 4000;
|
|
|
|
gen(src, size, size, CV_8U, 0, 256);
|
|
sum.create(size + 1, size + 1, CV_32S);
|
|
|
|
d_src = src;
|
|
d_sum.create(size + 1, size + 1, CV_32S);
|
|
|
|
for (int i = 0; i < 5; ++i)
|
|
{
|
|
SUBTEST << "size " << size << ", 8U";
|
|
|
|
CPU_ON;
|
|
integral(src, sum);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
gpu::integralBuffered(d_src, d_sum, d_buf);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(norm)
|
|
{
|
|
Mat src;
|
|
gpu::GpuMat d_src, d_buf;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 32FC4, NORM_INF";
|
|
|
|
gen(src, size, size, CV_32FC4, Scalar::all(0), Scalar::all(1));
|
|
|
|
CPU_ON;
|
|
for (int i = 0; i < 5; ++i)
|
|
norm(src, NORM_INF);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
|
|
GPU_ON;
|
|
for (int i = 0; i < 5; ++i)
|
|
gpu::norm(d_src, NORM_INF, d_buf);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(meanShift)
|
|
{
|
|
int sp = 10, sr = 10;
|
|
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 400; size <= 800; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 8UC3 vs 8UC4";
|
|
|
|
gen(src, size, size, CV_8UC3, Scalar::all(0), Scalar::all(256));
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
pyrMeanShiftFiltering(src, dst, sp, sr);
|
|
CPU_OFF;
|
|
|
|
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
|
|
|
d_src = src;
|
|
d_dst.create(d_src.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::meanShiftFiltering(d_src, d_dst, sp, sr);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(SURF)
|
|
{
|
|
Mat src1 = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
|
|
Mat src2 = imread(abspath("aloeR.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
|
|
if (src1.empty()) throw runtime_error("can't open aloeL.jpg");
|
|
if (src2.empty()) throw runtime_error("can't open aloeR.jpg");
|
|
|
|
gpu::GpuMat d_src1(src1);
|
|
gpu::GpuMat d_src2(src2);
|
|
|
|
SURF surf;
|
|
vector<KeyPoint> keypoints1, keypoints2;
|
|
|
|
CPU_ON;
|
|
surf(src1, Mat(), keypoints1);
|
|
surf(src2, Mat(), keypoints2);
|
|
CPU_OFF;
|
|
|
|
gpu::SURF_GPU d_surf;
|
|
gpu::GpuMat d_keypoints1, d_keypoints2;
|
|
gpu::GpuMat d_descriptors1, d_descriptors2;
|
|
|
|
GPU_ON;
|
|
d_surf(d_src1, gpu::GpuMat(), d_keypoints1);
|
|
d_surf(d_src2, gpu::GpuMat(), d_keypoints2);
|
|
GPU_OFF;
|
|
}
|
|
|
|
|
|
TEST(BruteForceMatcher)
|
|
{
|
|
// Init CPU matcher
|
|
|
|
int desc_len = 128;
|
|
|
|
BruteForceMatcher< L2<float> > matcher;
|
|
|
|
Mat query;
|
|
gen(query, 3000, desc_len, CV_32F, 0, 1);
|
|
|
|
Mat train;
|
|
gen(train, 3000, desc_len, CV_32F, 0, 1);
|
|
|
|
// Init GPU matcher
|
|
|
|
gpu::BruteForceMatcher_GPU< L2<float> > d_matcher;
|
|
|
|
gpu::GpuMat d_query(query);
|
|
gpu::GpuMat d_train(train);
|
|
|
|
// Output
|
|
vector< vector<DMatch> > matches(1);
|
|
vector< vector<DMatch> > d_matches(1);
|
|
|
|
SUBTEST << "match";
|
|
|
|
CPU_ON;
|
|
matcher.match(query, train, matches[0]);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
d_matcher.match(d_query, d_train, d_matches[0]);
|
|
GPU_OFF;
|
|
|
|
SUBTEST << "knnMatch";
|
|
int knn = 10;
|
|
|
|
CPU_ON;
|
|
matcher.knnMatch(query, train, matches, knn);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
d_matcher.knnMatch(d_query, d_train, d_matches, knn);
|
|
GPU_OFF;
|
|
|
|
SUBTEST << "radiusMatch";
|
|
float max_distance = 3.8f;
|
|
|
|
CPU_ON;
|
|
matcher.radiusMatch(query, train, matches, max_distance);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
|
|
GPU_OFF;
|
|
}
|
|
|
|
|
|
TEST(magnitude)
|
|
{
|
|
Mat x, y, mag;
|
|
gpu::GpuMat d_x, d_y, d_mag;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size;
|
|
|
|
gen(x, size, size, CV_32F, 0, 1);
|
|
gen(y, size, size, CV_32F, 0, 1);
|
|
mag.create(size, size, CV_32F);
|
|
|
|
CPU_ON;
|
|
magnitude(x, y, mag);
|
|
CPU_OFF;
|
|
|
|
d_x = x;
|
|
d_y = y;
|
|
d_mag.create(size, size, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::magnitude(d_x, d_y, d_mag);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(add)
|
|
{
|
|
Mat src1, src2, dst;
|
|
gpu::GpuMat d_src1, d_src2, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F";
|
|
|
|
gen(src1, size, size, CV_32F, 0, 1);
|
|
gen(src2, size, size, CV_32F, 0, 1);
|
|
dst.create(size, size, CV_32F);
|
|
|
|
CPU_ON;
|
|
add(src1, src2, dst);
|
|
CPU_OFF;
|
|
|
|
d_src1 = src1;
|
|
d_src2 = src2;
|
|
d_dst.create(size, size, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::add(d_src1, d_src2, d_dst);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(log)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F";
|
|
|
|
gen(src, size, size, CV_32F, 1, 10);
|
|
dst.create(size, size, CV_32F);
|
|
|
|
CPU_ON;
|
|
log(src, dst);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size, size, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::log(d_src, d_dst);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(exp)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F";
|
|
|
|
gen(src, size, size, CV_32F, 0, 1);
|
|
dst.create(size, size, CV_32F);
|
|
|
|
CPU_ON;
|
|
exp(src, dst);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size, size, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::exp(d_src, d_dst);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(mulSpectrums)
|
|
{
|
|
Mat src1, src2, dst;
|
|
gpu::GpuMat d_src1, d_src2, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size;
|
|
|
|
gen(src1, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
|
|
gen(src2, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
|
|
dst.create(size, size, CV_32FC2);
|
|
|
|
CPU_ON;
|
|
mulSpectrums(src1, src2, dst, 0, true);
|
|
CPU_OFF;
|
|
|
|
d_src1 = src1;
|
|
d_src2 = src2;
|
|
d_dst.create(size, size, CV_32FC2);
|
|
|
|
GPU_ON;
|
|
gpu::mulSpectrums(d_src1, d_src2, d_dst, 0, true);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(resize)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 1000; size <= 3000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size;
|
|
|
|
gen(src, size, size, CV_8U, 0, 256);
|
|
dst.create(size * 2, size * 2, CV_8U);
|
|
|
|
CPU_ON;
|
|
resize(src, dst, dst.size());
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size * 2, size * 2, CV_8U);
|
|
|
|
GPU_ON;
|
|
gpu::resize(d_src, d_dst, d_dst.size());
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(Sobel)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F";
|
|
|
|
gen(src, size, size, CV_32F, 0, 1);
|
|
dst.create(size, size, CV_32F);
|
|
|
|
CPU_ON;
|
|
Sobel(src, dst, dst.depth(), 1, 1);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size, size, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::Sobel(d_src, d_dst, d_dst.depth(), 1, 1);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(cvtColor)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
gen(src, 4000, 4000, CV_8UC1, 0, 255);
|
|
d_src.upload(src);
|
|
|
|
SUBTEST << "size 4000, CV_GRAY2BGRA";
|
|
|
|
dst.create(src.size(), CV_8UC4);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_GRAY2BGRA, 4);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_GRAY2BGRA, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
|
|
SUBTEST << "size 4000, CV_BGR2YCrCb";
|
|
|
|
dst.create(src.size(), CV_8UC3);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_BGR2YCrCb);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_BGR2YCrCb, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
|
|
SUBTEST << "size 4000, CV_YCrCb2BGR";
|
|
|
|
dst.create(src.size(), CV_8UC4);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_YCrCb2BGR, 4);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_YCrCb2BGR, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
|
|
SUBTEST << "size 4000, CV_BGR2XYZ";
|
|
|
|
dst.create(src.size(), CV_8UC3);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_BGR2XYZ);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_BGR2XYZ, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
|
|
SUBTEST << "size 4000, CV_XYZ2BGR";
|
|
|
|
dst.create(src.size(), CV_8UC4);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_XYZ2BGR, 4);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_XYZ2BGR, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
|
|
SUBTEST << "size 4000, CV_BGR2HSV";
|
|
|
|
dst.create(src.size(), CV_8UC3);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_BGR2HSV);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_BGR2HSV, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
|
|
SUBTEST << "size 4000, CV_HSV2BGR";
|
|
|
|
dst.create(src.size(), CV_8UC4);
|
|
|
|
CPU_ON;
|
|
cvtColor(src, dst, CV_HSV2BGR, 4);
|
|
CPU_OFF;
|
|
|
|
d_dst.create(d_src.size(), CV_8UC4);
|
|
|
|
GPU_ON;
|
|
gpu::cvtColor(d_src, d_dst, CV_HSV2BGR, 4);
|
|
GPU_OFF;
|
|
|
|
cv::swap(src, dst);
|
|
d_src.swap(d_dst);
|
|
}
|
|
|
|
|
|
TEST(erode)
|
|
{
|
|
Mat src, dst, ker;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size;
|
|
|
|
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
|
ker = getStructuringElement(MORPH_RECT, Size(3, 3));
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
erode(src, dst, ker);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(d_src.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::erode(d_src, d_dst, ker);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
TEST(threshold)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 8U, THRESH_TRUNC";
|
|
|
|
gen(src, size, size, CV_8U, 0, 100);
|
|
dst.create(size, size, CV_8U);
|
|
|
|
CPU_ON;
|
|
threshold(src, dst, 50.0, 0.0, THRESH_TRUNC);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size, size, CV_8U);
|
|
|
|
GPU_ON;
|
|
gpu::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC);
|
|
GPU_OFF;
|
|
}
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 8U, THRESH_BINARY";
|
|
|
|
gen(src, size, size, CV_8U, 0, 100);
|
|
dst.create(size, size, CV_8U);
|
|
|
|
CPU_ON;
|
|
threshold(src, dst, 50.0, 0.0, THRESH_BINARY);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size, size, CV_8U);
|
|
|
|
GPU_ON;
|
|
gpu::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY);
|
|
GPU_OFF;
|
|
}
|
|
|
|
for (int size = 2000; size <= 4000; size += 1000)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F, THRESH_TRUNC";
|
|
|
|
gen(src, size, size, CV_32F, 0, 100);
|
|
dst.create(size, size, CV_32F);
|
|
|
|
CPU_ON;
|
|
threshold(src, dst, 50.0, 0.0, THRESH_TRUNC);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(size, size, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(projectPoints)
|
|
{
|
|
Mat src;
|
|
vector<Point2f> dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
Mat rvec; gen(rvec, 1, 3, CV_32F, 0, 1);
|
|
Mat tvec; gen(tvec, 1, 3, CV_32F, 0, 1);
|
|
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0, 1);
|
|
camera_mat.at<float>(0, 1) = 0.f;
|
|
camera_mat.at<float>(1, 0) = 0.f;
|
|
camera_mat.at<float>(2, 0) = 0.f;
|
|
camera_mat.at<float>(2, 1) = 0.f;
|
|
|
|
for (int size = (int)1e6, count = 0; size >= 1e5 && count < 5; size = int(size / 1.4), count++)
|
|
{
|
|
SUBTEST << "size " << size;
|
|
|
|
gen(src, 1, size, CV_32FC3, Scalar::all(0), Scalar::all(10));
|
|
dst.resize(size);
|
|
|
|
CPU_ON;
|
|
projectPoints(src, rvec, tvec, camera_mat, Mat(), dst);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(1, size, CV_32FC2);
|
|
|
|
GPU_ON;
|
|
gpu::projectPoints(d_src, rvec, tvec, camera_mat, Mat(), d_dst);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
void InitSolvePnpRansac()
|
|
{
|
|
Mat object; gen(object, 1, 4, CV_32FC3, Scalar::all(0), Scalar::all(100));
|
|
Mat image; gen(image, 1, 4, CV_32FC2, Scalar::all(0), Scalar::all(100));
|
|
Mat rvec, tvec;
|
|
gpu::solvePnpRansac(object, image, Mat::eye(3, 3, CV_32F), Mat(), rvec, tvec,
|
|
gpu::SolvePnpRansacParams());
|
|
}
|
|
|
|
|
|
// It's not very correct test as solvePnP and solvePnpRansac use different algorithms internally
|
|
// TODO add proper test after CPU solvePnpRansac being added
|
|
TEST(solvePnpRansac)
|
|
{
|
|
InitSolvePnpRansac();
|
|
|
|
int num_points = 1000000;
|
|
|
|
Mat object; gen(object, 1, num_points, CV_32FC3, Scalar::all(0), Scalar::all(100));
|
|
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0.5, 1);
|
|
camera_mat.at<float>(0, 1) = 0.f;
|
|
camera_mat.at<float>(1, 0) = 0.f;
|
|
camera_mat.at<float>(2, 0) = 0.f;
|
|
camera_mat.at<float>(2, 1) = 0.f;
|
|
|
|
Mat rvec_gold; gen(rvec_gold, 1, 3, CV_32F, 0, 1);
|
|
Mat tvec_gold; gen(tvec_gold, 1, 3, CV_32F, 0, 1);
|
|
|
|
vector<Point2f> image_vec;
|
|
projectPoints(object, rvec_gold, tvec_gold, camera_mat, Mat(), image_vec);
|
|
Mat image(1, image_vec.size(), CV_32FC2, &image_vec[0]);
|
|
|
|
Mat rvec, tvec;
|
|
|
|
CPU_ON;
|
|
solvePnP(object, image, camera_mat, Mat(), rvec, tvec);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
gpu::SolvePnpRansacParams params;
|
|
gpu::solvePnpRansac(object, image, camera_mat, Mat(), rvec, tvec, params);
|
|
GPU_OFF;
|
|
} |