opencv/samples/dnn/speech_recognition.cpp
luz paz 8e8e4bbabc dnn: fix various dnn related typos
Fixes source comments and documentation related to dnn code.
2022-03-23 18:12:12 -04:00

588 lines
19 KiB
C++

#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <vector>
#include <string>
#include <unordered_map>
#include <cmath>
#include <random>
#include <numeric>
using namespace cv;
using namespace std;
class FilterbankFeatures {
// Initializes pre-processing class. Default values are the values used by the Jasper
// architecture for pre-processing. For more details, refer to the paper here:
// https://arxiv.org/abs/1904.03288
private:
int sample_rate = 16000;
double window_size = 0.02;
double window_stride = 0.01;
int win_length = static_cast<int>(sample_rate * window_size); // Number of samples in window
int hop_length = static_cast<int>(sample_rate * window_stride); // Number of steps to advance between frames
int n_fft = 512; // Size of window for STFT
// Parameters for filterbanks calculation
int n_filt = 64;
double lowfreq = 0.;
double highfreq = sample_rate / 2;
public:
// Mel filterbanks preparation
double hz_to_mel(double frequencies)
{
//Converts frequencies from hz to mel scale
// Fill in the linear scale
double f_min = 0.0;
double f_sp = 200.0 / 3;
double mels = (frequencies - f_min) / f_sp;
// Fill in the log-scale part
double min_log_hz = 1000.0; // beginning of log region (Hz)
double min_log_mel = (min_log_hz - f_min) / f_sp; // same (Mels)
double logstep = std::log(6.4) / 27.0; // step size for log region
if (frequencies >= min_log_hz)
{
mels = min_log_mel + std::log(frequencies / min_log_hz) / logstep;
}
return mels;
}
vector<double> mel_to_hz(vector<double>& mels)
{
// Converts frequencies from mel to hz scale
// Fill in the linear scale
double f_min = 0.0;
double f_sp = 200.0 / 3;
vector<double> freqs;
for (size_t i = 0; i < mels.size(); i++)
{
freqs.push_back(f_min + f_sp * mels[i]);
}
// And now the nonlinear scale
double min_log_hz = 1000.0; // beginning of log region (Hz)
double min_log_mel = (min_log_hz - f_min) / f_sp; // same (Mels)
double logstep = std::log(6.4) / 27.0; // step size for log region
for(size_t i = 0; i < mels.size(); i++)
{
if (mels[i] >= min_log_mel)
{
freqs[i] = min_log_hz * exp(logstep * (mels[i] - min_log_mel));
}
}
return freqs;
}
vector<double> mel_frequencies(int n_mels, double fmin, double fmax)
{
// Calculates n mel frequencies between 2 frequencies
double min_mel = hz_to_mel(fmin);
double max_mel = hz_to_mel(fmax);
vector<double> mels;
double step = (max_mel - min_mel) / (n_mels - 1);
for(double i = min_mel; i < max_mel; i += step)
{
mels.push_back(i);
}
mels.push_back(max_mel);
vector<double> res = mel_to_hz(mels);
return res;
}
vector<vector<double>> mel(int n_mels, double fmin, double fmax)
{
// Generates mel filterbank matrix
double num = 1 + n_fft / 2;
vector<vector<double>> weights(n_mels, vector<double>(static_cast<int>(num), 0.));
// Center freqs of each FFT bin
vector<double> fftfreqs;
double step = (sample_rate / 2) / (num - 1);
for(double i = 0; i <= sample_rate / 2; i += step)
{
fftfreqs.push_back(i);
}
// 'Center freqs' of mel bands - uniformly spaced between limits
vector<double> mel_f = mel_frequencies(n_mels + 2, fmin, fmax);
vector<double> fdiff;
for(size_t i = 1; i < mel_f.size(); ++i)
{
fdiff.push_back(mel_f[i]- mel_f[i - 1]);
}
vector<vector<double>> ramps(mel_f.size(), vector<double>(fftfreqs.size()));
for (size_t i = 0; i < mel_f.size(); ++i)
{
for (size_t j = 0; j < fftfreqs.size(); ++j)
{
ramps[i][j] = mel_f[i] - fftfreqs[j];
}
}
double lower, upper, enorm;
for (int i = 0; i < n_mels; ++i)
{
// using Slaney-style mel which is scaled to be approx constant energy per channel
enorm = 2./(mel_f[i + 2] - mel_f[i]);
for (int j = 0; j < static_cast<int>(num); ++j)
{
// lower and upper slopes for all bins
lower = (-1) * ramps[i][j] / fdiff[i];
upper = ramps[i + 2][j] / fdiff[i + 1];
weights[i][j] = max(0., min(lower, upper)) * enorm;
}
}
return weights;
}
// STFT preparation
vector<double> pad_window_center(vector<double>&data, int size)
{
// Pad the window out to n_fft size
int n = static_cast<int>(data.size());
int lpad = static_cast<int>((size - n) / 2);
vector<double> pad_array;
for(int i = 0; i < lpad; ++i)
{
pad_array.push_back(0.);
}
for(size_t i = 0; i < data.size(); ++i)
{
pad_array.push_back(data[i]);
}
for(int i = 0; i < lpad; ++i)
{
pad_array.push_back(0.);
}
return pad_array;
}
vector<vector<double>> frame(vector<double>& x)
{
// Slices a data array into overlapping frames.
int n_frames = static_cast<int>(1 + (x.size() - n_fft) / hop_length);
vector<vector<double>> new_x(n_fft, vector<double>(n_frames));
for (int i = 0; i < n_fft; ++i)
{
for (int j = 0; j < n_frames; ++j)
{
new_x[i][j] = x[i + j * hop_length];
}
}
return new_x;
}
vector<double> hanning()
{
// https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
vector<double> window_tensor;
for (int j = 1 - win_length; j < win_length; j+=2)
{
window_tensor.push_back(1 - (0.5 * (1 - cos(CV_PI * j / (win_length - 1)))));
}
return window_tensor;
}
vector<vector<double>> stft_power(vector<double>& y)
{
// Short Time Fourier Transform. The STFT represents a signal in the time-frequency
// domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
// https://en.wikipedia.org/wiki/Short-time_Fourier_transform
// Pad the time series so that frames are centered
vector<double> new_y;
int num = int(n_fft / 2);
for (int i = 0; i < num; ++i)
{
new_y.push_back(y[num - i]);
}
for (size_t i = 0; i < y.size(); ++i)
{
new_y.push_back(y[i]);
}
for (size_t i = y.size() - 2; i >= y.size() - num - 1; --i)
{
new_y.push_back(y[i]);
}
// Compute a window function
vector<double> window_tensor = hanning();
// Pad the window out to n_fft size
vector<double> fft_window = pad_window_center(window_tensor, n_fft);
// Window the time series
vector<vector<double>> y_frames = frame(new_y);
// Multiply on fft_window
for (size_t i = 0; i < y_frames.size(); ++i)
{
for (size_t j = 0; j < y_frames[0].size(); ++j)
{
y_frames[i][j] *= fft_window[i];
}
}
// Transpose frames for computing stft
vector<vector<double>> y_frames_transpose(y_frames[0].size(), vector<double>(y_frames.size()));
for (size_t i = 0; i < y_frames[0].size(); ++i)
{
for (size_t j = 0; j < y_frames.size(); ++j)
{
y_frames_transpose[i][j] = y_frames[j][i];
}
}
// Short Time Fourier Transform
// and get power of spectrum
vector<vector<double>> spectrum_power(y_frames_transpose[0].size() / 2 + 1 );
for (size_t i = 0; i < y_frames_transpose.size(); ++i)
{
Mat dstMat;
dft(y_frames_transpose[i], dstMat, DFT_COMPLEX_OUTPUT);
// we need only the first part of the spectrum, the second part is symmetrical
for (int j = 0; j < static_cast<int>(y_frames_transpose[0].size()) / 2 + 1; ++j)
{
double power_re = dstMat.at<double>(2 * j) * dstMat.at<double>(2 * j);
double power_im = dstMat.at<double>(2 * j + 1) * dstMat.at<double>(2 * j + 1);
spectrum_power[j].push_back(power_re + power_im);
}
}
return spectrum_power;
}
Mat calculate_features(vector<double>& x)
{
// Calculates filterbank features matrix.
// Do preemphasis
std::default_random_engine generator;
std::normal_distribution<double> normal_distr(0, 1);
double dither = 1e-5;
for(size_t i = 0; i < x.size(); ++i)
{
x[i] += dither * static_cast<double>(normal_distr(generator));
}
double preemph = 0.97;
for (size_t i = x.size() - 1; i > 0; --i)
{
x[i] -= preemph * x[i-1];
}
// Calculate Short Time Fourier Transform and get power of spectrum
auto spectrum_power = stft_power(x);
vector<vector<double>> filterbanks = mel(n_filt, lowfreq, highfreq);
// Calculate log of multiplication of filterbanks matrix on spectrum_power matrix
vector<vector<double>> x_stft(filterbanks.size(), vector<double>(spectrum_power[0].size(), 0));
for (size_t i = 0; i < filterbanks.size(); ++i)
{
for (size_t j = 0; j < filterbanks[0].size(); ++j)
{
for (size_t k = 0; k < spectrum_power[0].size(); ++k)
{
x_stft[i][k] += filterbanks[i][j] * spectrum_power[j][k];
}
}
for (size_t k = 0; k < spectrum_power[0].size(); ++k)
{
x_stft[i][k] = std::log(x_stft[i][k] + 1e-20);
}
}
// normalize data
auto elments_num = x_stft[0].size();
for(size_t i = 0; i < x_stft.size(); ++i)
{
double x_mean = std::accumulate(x_stft[i].begin(), x_stft[i].end(), 0.) / elments_num; // arithmetic mean
double x_std = 0; // standard deviation
for(size_t j = 0; j < elments_num; ++j)
{
double subtract = x_stft[i][j] - x_mean;
x_std += subtract * subtract;
}
x_std /= elments_num;
x_std = sqrt(x_std) + 1e-10; // make sure x_std is not zero
for(size_t j = 0; j < elments_num; ++j)
{
x_stft[i][j] = (x_stft[i][j] - x_mean) / x_std; // standard score
}
}
Mat calculate_features(static_cast<int>(x_stft.size()), static_cast<int>(x_stft[0].size()), CV_32F);
for(int i = 0; i < calculate_features.size[0]; ++i)
{
for(int j = 0; j < calculate_features.size[1]; ++j)
{
calculate_features.at<float>(i, j) = static_cast<float>(x_stft[i][j]);
}
}
return calculate_features;
}
};
class Decoder {
// Used for decoding the output of jasper model
private:
unordered_map<int, char> labels_map = fillMap();
int blank_id = 28;
public:
unordered_map<int, char> fillMap()
{
vector<char> labels={' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p'
,'q','r','s','t','u','v','w','x','y','z','\''};
unordered_map<int, char> map;
for(int i = 0; i < static_cast<int>(labels.size()); ++i)
{
map[i] = labels[i];
}
return map;
}
string decode(Mat& x)
{
// Takes output of Jasper model and performs ctc decoding algorithm to
// remove duplicates and special symbol. Returns prediction
vector<int> prediction;
for(int i = 0; i < x.size[1]; ++i)
{
double maxEl = -1e10;
int ind = 0;
for(int j = 0; j < x.size[2]; ++j)
{
if (maxEl <= x.at<float>(0, i, j))
{
maxEl = x.at<float>(0, i, j);
ind = j;
}
}
prediction.push_back(ind);
}
// CTC decoding procedure
vector<double> decoded_prediction = {};
int previous = blank_id;
for(int i = 0; i < static_cast<int>(prediction.size()); ++i)
{
if (( prediction[i] != previous || previous == blank_id) && prediction[i] != blank_id)
{
decoded_prediction.push_back(prediction[i]);
}
previous = prediction[i];
}
string hypotheses = {};
for(size_t i = 0; i < decoded_prediction.size(); ++i)
{
auto it = labels_map.find(static_cast<char>(decoded_prediction[i]));
if (it != labels_map.end())
hypotheses.push_back(it->second);
}
return hypotheses;
}
};
static string predict(Mat& features, dnn::Net net, Decoder decoder)
{
// Passes the features through the Jasper model and decodes the output to english transcripts.
// expand 2d features matrix to 3d
vector<int> sizes = {1, static_cast<int>(features.size[0]),
static_cast<int>(features.size[1])};
features = features.reshape(0, sizes);
// make prediction
net.setInput(features);
Mat output = net.forward();
// decode output to transcript
auto prediction = decoder.decode(output);
return prediction;
}
static int readAudioFile(vector<double>& inputAudio, string file, int audioStream)
{
VideoCapture cap;
int samplingRate = 16000;
vector<int> params { CAP_PROP_AUDIO_STREAM, audioStream,
CAP_PROP_VIDEO_STREAM, -1,
CAP_PROP_AUDIO_DATA_DEPTH, CV_32F,
CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
};
cap.open(file, CAP_ANY, params);
if (!cap.isOpened())
{
cerr << "Error : Can't read audio file: '" << file << "' with audioStream = " << audioStream << endl;
return -1;
}
const int audioBaseIndex = (int)cap.get(CAP_PROP_AUDIO_BASE_INDEX);
vector<double> frameVec;
Mat frame;
for (;;)
{
if (cap.grab())
{
cap.retrieve(frame, audioBaseIndex);
frameVec = frame;
inputAudio.insert(inputAudio.end(), frameVec.begin(), frameVec.end());
}
else
{
break;
}
}
return samplingRate;
}
static int readAudioMicrophone(vector<double>& inputAudio, int microTime)
{
VideoCapture cap;
int samplingRate = 16000;
vector<int> params { CAP_PROP_AUDIO_STREAM, 0,
CAP_PROP_VIDEO_STREAM, -1,
CAP_PROP_AUDIO_DATA_DEPTH, CV_32F,
CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
};
cap.open(0, CAP_ANY, params);
if (!cap.isOpened())
{
cerr << "Error: Can't open microphone" << endl;
return -1;
}
const int audioBaseIndex = (int)cap.get(CAP_PROP_AUDIO_BASE_INDEX);
vector<double> frameVec;
Mat frame;
if (microTime <= 0)
{
cerr << "Error: Duration of audio chunk must be > 0" << endl;
return -1;
}
size_t sizeOfData = static_cast<size_t>(microTime * samplingRate);
while (inputAudio.size() < sizeOfData)
{
if (cap.grab())
{
cap.retrieve(frame, audioBaseIndex);
frameVec = frame;
inputAudio.insert(inputAudio.end(), frameVec.begin(), frameVec.end());
}
else
{
cerr << "Error: Grab error" << endl;
break;
}
}
return samplingRate;
}
int main(int argc, char** argv)
{
const String keys =
"{help h usage ? | | This script runs Jasper Speech recognition model }"
"{input_file i | | Path to input audio file. If not specified, microphone input will be used }"
"{audio_duration t | 15 | Duration of audio chunk to be captured from microphone }"
"{audio_stream a | 0 | CAP_PROP_AUDIO_STREAM value }"
"{show_spectrogram s | false | Show a spectrogram of the input audio: true / false / 1 / 0 }"
"{model m | jasper.onnx | Path to the onnx file of Jasper. You can download the converted onnx model "
"from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing}"
"{backend b | dnn::DNN_BACKEND_DEFAULT | Select a computation backend: "
"dnn::DNN_BACKEND_DEFAULT, "
"dnn::DNN_BACKEND_INFERENCE_ENGINE, "
"dnn::DNN_BACKEND_OPENCV }"
"{target t | dnn::DNN_TARGET_CPU | Select a target device: "
"dnn::DNN_TARGET_CPU, "
"dnn::DNN_TARGET_OPENCL, "
"dnn::DNN_TARGET_OPENCL_FP16 }"
;
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
// Load Network
dnn::Net net = dnn::readNetFromONNX(parser.get<std::string>("model"));
net.setPreferableBackend(parser.get<int>("backend"));
net.setPreferableTarget(parser.get<int>("target"));
// Get audio
vector<double>inputAudio = {};
int samplingRate = 0;
if (parser.has("input_file"))
{
string audio = samples::findFile(parser.get<std::string>("input_file"));
samplingRate = readAudioFile(inputAudio, audio, parser.get<int>("audio_stream"));
}
else
{
samplingRate = readAudioMicrophone(inputAudio, parser.get<int>("audio_duration"));
}
if ((inputAudio.size() == 0) || samplingRate <= 0)
{
cerr << "Error: problems with audio reading, check input arguments" << endl;
return -1;
}
if (inputAudio.size() / samplingRate < 6)
{
cout << "Warning: For predictable network performance duration of audio must exceed 6 sec."
" Audio will be extended with zero samples" << endl;
for(int i = static_cast<int>(inputAudio.size()) - 1; i < samplingRate * 6; ++i)
{
inputAudio.push_back(0);
}
}
// Calculate features
FilterbankFeatures filter;
auto calculated_features = filter.calculate_features(inputAudio);
// Show spectogram if required
if (parser.get<bool>("show_spectrogram") == true)
{
Mat spectogram;
normalize(calculated_features, spectogram, 0, 255, NORM_MINMAX, CV_8U);
applyColorMap(spectogram, spectogram, COLORMAP_INFERNO);
imshow("spectogram", spectogram);
waitKey(0);
}
Decoder decoder;
string prediction = predict(calculated_features, net, decoder);
for( auto &transcript: prediction)
{
cout << transcript;
}
return 0;
}