opencv/modules/dnn/src/layers/padding_layer.cpp
Yashas Samaga B L 613c12e590 Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module

* stub cuda4dnn design

* minor fixes for tests and doxygen

* add csl public api directory to module headers

* add low-level CSL components

* add high-level CSL components

* integrate csl::Tensor into backbone code

* switch to CPU iff unsupported; otherwise, fail on error

* add fully connected layer

* add softmax layer

* add activation layers

* support arbitary rank TensorDescriptor

* pass input wrappers to `initCUDA()`

* add 1d/2d/3d-convolution

* add pooling layer

* reorganize and refactor code

* fixes for gcc, clang and doxygen; remove cxx14/17 code

* add blank_layer

* add LRN layer

* add rounding modes for pooling layer

* split tensor.hpp into tensor.hpp and tensor_ops.hpp

* add concat layer

* add scale layer

* add batch normalization layer

* split math.cu into activations.cu and math.hpp

* add eltwise layer

* add flatten layer

* add tensor transform api

* add asymmetric padding support for convolution layer

* add reshape layer

* fix rebase issues

* add permute layer

* add padding support for concat layer

* refactor and reorganize code

* add normalize layer

* optimize bias addition in scale layer

* add prior box layer

* fix and optimize normalize layer

* add asymmetric padding support for pooling layer

* add event API

* improve pooling performance for some padding scenarios

* avoid over-allocation of compute resources to kernels

* improve prior box performance

* enable layer fusion

* add const layer

* add resize layer

* add slice layer

* add padding layer

* add deconvolution layer

* fix channelwise  ReLU initialization

* add vector traits

* add vectorized versions of relu, clipped_relu, power

* add vectorized concat kernels

* improve concat_with_offsets performance

* vectorize scale and bias kernels

* add support for multi-billion element tensors

* vectorize prior box kernels

* fix address alignment check

* improve bias addition performance of conv/deconv/fc layers

* restructure code for supporting multiple targets

* add DNN_TARGET_CUDA_FP64

* add DNN_TARGET_FP16

* improve vectorization

* add region layer

* improve tensor API, add dynamic ranks

1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
  - size_range: computes the combined size of for a given axis range
  - tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability

* fix parametric relu activation

* add squeeze/unsqueeze tensor API

* add reorg layer

* optimize permute and enable 2d permute

* enable 1d and 2d slice

* add split layer

* add shuffle channel layer

* allow tensors of different ranks in reshape primitive

* patch SliceOp to allow Crop Layer

* allow extra shape inputs in reshape layer

* use `std::move_backward` instead of `std::move` for insert in resizable_static_array

* improve workspace management

* add spatial LRN

* add nms (cpu) to region layer

* add max pooling with argmax ( and a fix to limits.hpp)

* add max unpooling layer

* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA

* update supportBackend to be more rigorous

* remove stray include from preventing non-cuda build

* include op_cuda.hpp outside condition #if

* refactoring, fixes and many optimizations

* drop DNN_TARGET_CUDA_FP64

* fix gcc errors

* increase max. tensor rank limit to six

* add Interp layer

* drop custom layers; use BackendNode

* vectorize activation kernels

* fixes for gcc

* remove wrong assertion

* fix broken assertion in unpooling primitive

* fix build errors in non-CUDA build

* completely remove workspace from public API

* fix permute layer

* enable accuracy and perf. tests for DNN_TARGET_CUDA

* add asynchronous forward

* vectorize eltwise ops

* vectorize fill kernel

* fixes for gcc

* remove CSL headers from public API

* remove csl header source group from cmake

* update min. cudnn version in cmake

* add numerically stable FP32 log1pexp

* refactor code

* add FP16 specialization to cudnn based tensor addition

* vectorize scale1 and bias1 + minor refactoring

* fix doxygen build

* fix invalid alignment assertion

* clear backend wrappers before allocateLayers

* ignore memory lock failures

* do not allocate internal blobs

* integrate NVTX

* add numerically stable half precision log1pexp

* fix indentation, following coding style,  improve docs

* remove accidental modification of IE code

* Revert "add asynchronous forward"

This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.

* [cmake] throw error for unsupported CC versions

* fix rebase issues

* add more docs, refactor code, fix bugs

* minor refactoring and fixes

* resolve warnings/errors from clang

* remove haveCUDA() checks from supportBackend()

* remove NVTX integration

* changes based on review comments

* avoid exception when no CUDA device is present

* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00

253 lines
9.1 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of padding layer, which adds paddings to input blob.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include <vector>
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/padding.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class PaddingLayerImpl CV_FINAL : public PaddingLayer
{
public:
PaddingLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
paddingValue = params.get<float>("value", 0);
inputDims = params.get<int>("input_dims", -1);
paddingType = params.get<String>("type", "constant");
CV_Assert(params.has("paddings"));
const DictValue& paddingsParam = params.get("paddings");
CV_Assert((paddingsParam.size() & 1) == 0);
paddings.resize(paddingsParam.size() / 2);
for (int i = 0; i < paddings.size(); ++i)
{
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before.
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after.
CV_Assert_N(paddings[i].first >= 0, paddings[i].second >= 0);
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 1);
const MatShape& inpShape = inputs[0];
CV_Assert(inpShape.size() >= paddings.size());
CV_Assert(inputDims == -1 || inpShape.size() == inputDims || inpShape.size() > paddings.size());
outputs.resize(1, inpShape);
int offset = (inputDims == -1 ? 0 : (inpShape.size() > inputDims ? 1 : 0));
for (int i = 0; i < paddings.size(); ++i)
{
outputs[0][offset + i] = inpShape[offset + i] + paddings[i].first + paddings[i].second;
}
return false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
// Compute dstRanges.
const MatSize& inpShape = inputs[0].size;
if (inputDims != -1 && inputs[0].dims != inputDims)
{
paddings.insert(paddings.begin(), std::make_pair(0, 0));
}
dstRanges.resize(paddings.size());
for (int i = 0; i < paddings.size(); ++i)
{
dstRanges[i].start = paddings[i].first;
dstRanges[i].end = paddings[i].first + inpShape[i];
}
// Add the rest of dimensions.
for (int i = dstRanges.size(); i < inputs[0].dims; ++i)
{
dstRanges.push_back(Range::all());
paddings.push_back(std::make_pair(0, 0));
}
inputDims = -1; // Next time paddings are filled for all the dimensions.
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) &&
(preferableTarget != DNN_TARGET_MYRIAD ||
(dstRanges.size() == 4 && paddings[0].first == 0 && paddings[0].second == 0));
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && dstRanges.size() == 4);
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
if (paddingType == "constant")
{
if (inputs_arr.depth() == CV_16S)
{
std::vector<float> paddingValue_fp32(1, paddingValue);
std::vector<int16_t> paddingValue_fp16(1);
cv::convertFp16(paddingValue_fp32, paddingValue_fp16);
outputs[0].setTo(paddingValue_fp16[0]);
}
else
outputs[0].setTo(paddingValue);
inputs[0].copyTo(outputs[0](dstRanges));
}
else if (paddingType == "reflect")
{
CV_Assert(inputs.size() == 1);
CV_Assert(outputs.size() == 1);
CV_Assert(inputs[0].dims == 4);
CV_Assert(outputs[0].dims == 4);
if (inputs[0].size[0] != outputs[0].size[0] || inputs[0].size[1] != outputs[0].size[1])
CV_Error(Error::StsNotImplemented, "Only spatial reflection padding is supported.");
const int inpHeight = inputs[0].size[2];
const int inpWidth = inputs[0].size[3];
const int outHeight = outputs[0].size[2];
const int outWidth = outputs[0].size[3];
const int padTop = dstRanges[2].start;
const int padBottom = outHeight - dstRanges[2].end;
const int padLeft = dstRanges[3].start;
const int padRight = outWidth - dstRanges[3].end;
CV_CheckLT(padTop, inpHeight, ""); CV_CheckLT(padBottom, inpHeight, "");
CV_CheckLT(padLeft, inpWidth, ""); CV_CheckLT(padRight, inpWidth, "");
for (size_t n = 0; n < inputs[0].size[0]; ++n)
{
for (size_t ch = 0; ch < inputs[0].size[1]; ++ch)
{
copyMakeBorder(getPlane(inputs[0], n, ch),
getPlane(outputs[0], n, ch),
padTop, padBottom, padLeft, padRight,
BORDER_REFLECT_101);
}
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown padding type: " + paddingType);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
cuda4dnn::PaddingType ptype;
if (paddingType == "constant")
ptype = PaddingType::CONSTANT;
else if (paddingType == "reflect")
ptype = PaddingType::REFLECTION101;
else
CV_Error(Error::StsNotImplemented, "Unsupported padding mode");
return make_cuda_node<cuda4dnn::PaddingOp>(preferableTarget, std::move(context->stream), ptype, paddingValue, dstRanges);
}
#endif
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
int inW, inH, inC, inN;
int minN = std::max(dstRanges[0].start, 0);
int minC = std::max(dstRanges[1].start, 0);
int minY = std::max(dstRanges[2].start, 0);
int minX = std::max(dstRanges[3].start, 0);
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func padded =
Halide::BoundaryConditions::constant_exterior(inputBuffer, paddingValue);
top(x, y, c, n) = padded(x - minX, y - minY, c - minC, n - minN);
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_INF_ENGINE
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
InferenceEngine::Builder::Layer ieLayer(name);
ieLayer.setName(name);
ieLayer.setType("Pad");
std::vector<int> begins(paddings.size(), 0), ends(paddings.size(), 0);
for (int i = 0; i < paddings.size(); ++i)
{
begins[i] = paddings[i].first;
ends[i] = paddings[i].second;
}
ieLayer.getParameters()["pads_begin"] = begins;
ieLayer.getParameters()["pads_end"] = ends;
ieLayer.getParameters()["pad_mode"] = paddingType;
if (paddingType == "constant")
ieLayer.getParameters()["pad_value"] = paddingValue;
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(1));
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1));
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
}
#endif
private:
std::vector<std::pair<int, int> > paddings; // Pairs pad before, pad after.
std::vector<Range> dstRanges;
int inputDims;
float paddingValue;
std::string paddingType;
};
Ptr<PaddingLayer> PaddingLayer::create(const LayerParams &params)
{
return Ptr<PaddingLayer>(new PaddingLayerImpl(params));
}
}
}