opencv/modules/dnn/src/layers/scale_layer.cpp
Li Peng 8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00

158 lines
4.8 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Scale layer.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv
{
namespace dnn
{
class ScaleLayerImpl : public ScaleLayer
{
public:
ScaleLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
hasBias = params.get<bool>("bias_term", false);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(blobs.size() == 1 + hasBias);
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide();
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Mat &inpBlob = *inputs[ii];
Mat &outBlob = outputs[ii];
CV_Assert(inpBlob.size[1] == blobs[0].total());
if (hasBias)
CV_Assert(inpBlob.size[1] == blobs[1].total());
CV_Assert(inpBlob.type() == CV_32F && outBlob.type() == CV_32F);
for( int cn = 0; cn < inpBlob.size[0]; cn++ )
{
for (int n = 0; n < inpBlob.size[1]; n++)
{
float w = blobs[0].at<float>(n);
float b = hasBias ? blobs[1].at<float>(n) : 0;
Mat outBlobPlane = getPlane(outBlob, cn, n);
Mat inpBlobPlane = getPlane(inpBlob, cn, n);
inpBlobPlane.convertTo(outBlobPlane, CV_32F, w, b);
}
}
}
}
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_HALIDE
// attachHalide can work both with Halide::Buffer and Halide::Func. In the
// second case it will be a fusion.
Halide::Func attachHalide(const Halide::Expr& input)
{
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Var x("x"), y("y"), c("c"), n("n");
const int numChannels = blobs[0].total();
auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
Halide::Expr topExpr = input * weights(c);
if (hasBias)
{
auto bias = wrapToHalideBuffer(blobs[1], {numChannels});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return top;
}
#endif // HAVE_HALIDE
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)outputs; // suppress unused variable warning
long flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 2*total(inputs[i]);
}
return flops;
}
};
Ptr<ScaleLayer> ScaleLayer::create(const LayerParams& params)
{
return Ptr<ScaleLayer>(new ScaleLayerImpl(params));
}
} // namespace dnn
} // namespace cv