mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 00:20:59 +08:00
1687 lines
42 KiB
C++
1687 lines
42 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
#include "_vm.h"
|
|
#include <stdlib.h>
|
|
|
|
#define Sgn(x) ( (x)<0 ? -1:1 ) /* Sgn(0) = 1 ! */
|
|
/*===========================================================================*/
|
|
CvStatus
|
|
icvLMedS( int *points1, int *points2, int numPoints, CvMatrix3 * fundamentalMatrix )
|
|
{
|
|
int sample, j, amount_samples, done;
|
|
int amount_solutions;
|
|
int ml7[21], mr7[21];
|
|
|
|
double F_try[9 * 3];
|
|
double F[9];
|
|
double Mj, Mj_new;
|
|
|
|
int i, num;
|
|
|
|
int *ml;
|
|
int *mr;
|
|
int *new_ml;
|
|
int *new_mr;
|
|
int new_num;
|
|
CvStatus error;
|
|
|
|
error = CV_NO_ERR;
|
|
|
|
if( fundamentalMatrix == 0 )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
num = numPoints;
|
|
|
|
if( num < 6 )
|
|
{
|
|
return CV_BADFACTOR_ERR;
|
|
} /* if */
|
|
|
|
ml = (int *) cvAlloc( sizeof( int ) * num * 3 );
|
|
mr = (int *) cvAlloc( sizeof( int ) * num * 3 );
|
|
|
|
for( i = 0; i < num; i++ )
|
|
{
|
|
|
|
ml[i * 3] = points1[i * 2];
|
|
ml[i * 3 + 1] = points1[i * 2 + 1];
|
|
|
|
ml[i * 3 + 2] = 1;
|
|
|
|
mr[i * 3] = points2[i * 2];
|
|
mr[i * 3 + 1] = points2[i * 2 + 1];
|
|
|
|
mr[i * 3 + 2] = 1;
|
|
} /* for */
|
|
|
|
if( num > 7 )
|
|
{
|
|
|
|
Mj = -1;
|
|
amount_samples = 1000; /* ------- Must be changed ! --------- */
|
|
|
|
for( sample = 0; sample < amount_samples; sample++ )
|
|
{
|
|
|
|
icvChoose7( ml, mr, num, ml7, mr7 );
|
|
icvPoint7( ml7, mr7, F_try, &amount_solutions );
|
|
|
|
for( i = 0; i < amount_solutions / 9; i++ )
|
|
{
|
|
|
|
Mj_new = icvMedian( ml, mr, num, F_try + i * 9 );
|
|
|
|
if( Mj_new >= 0 && (Mj == -1 || Mj_new < Mj) )
|
|
{
|
|
|
|
for( j = 0; j < 9; j++ )
|
|
{
|
|
|
|
F[j] = F_try[i * 9 + j];
|
|
} /* for */
|
|
|
|
Mj = Mj_new;
|
|
} /* if */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
if( Mj == -1 )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
done = icvBoltingPoints( ml, mr, num, F, Mj, &new_ml, &new_mr, &new_num );
|
|
|
|
if( done == -1 )
|
|
{
|
|
|
|
cvFree( &mr );
|
|
cvFree( &ml );
|
|
return CV_OUTOFMEM_ERR;
|
|
} /* if */
|
|
|
|
if( done > 7 )
|
|
error = icvPoints8( new_ml, new_mr, new_num, F );
|
|
|
|
cvFree( &new_mr );
|
|
cvFree( &new_ml );
|
|
|
|
}
|
|
else
|
|
{
|
|
error = icvPoint7( ml, mr, F, &i );
|
|
} /* if */
|
|
|
|
if( error == CV_NO_ERR )
|
|
error = icvRank2Constraint( F );
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
for( j = 0; j < 3; j++ )
|
|
fundamentalMatrix->m[i][j] = (float) F[i * 3 + j];
|
|
|
|
return error;
|
|
|
|
} /* icvLMedS */
|
|
|
|
/*===========================================================================*/
|
|
/*===========================================================================*/
|
|
void
|
|
icvChoose7( int *ml, int *mr, int num, int *ml7, int *mr7 )
|
|
{
|
|
int indexes[7], i, j;
|
|
|
|
if( !ml || !mr || num < 7 || !ml7 || !mr7 )
|
|
return;
|
|
|
|
for( i = 0; i < 7; i++ )
|
|
{
|
|
|
|
indexes[i] = (int) ((double) rand() / RAND_MAX * num);
|
|
|
|
for( j = 0; j < i; j++ )
|
|
{
|
|
|
|
if( indexes[i] == indexes[j] )
|
|
i--;
|
|
} /* for */
|
|
} /* for */
|
|
|
|
for( i = 0; i < 21; i++ )
|
|
{
|
|
|
|
ml7[i] = ml[3 * indexes[i / 3] + i % 3];
|
|
mr7[i] = mr[3 * indexes[i / 3] + i % 3];
|
|
} /* for */
|
|
} /* cs_Choose7 */
|
|
|
|
/*===========================================================================*/
|
|
/*===========================================================================*/
|
|
CvStatus
|
|
icvCubic( double a2, double a1, double a0, double *squares )
|
|
{
|
|
double p, q, D, c1, c2, b1, b2, ro1, ro2, fi1, fi2, tt;
|
|
double x[6][3];
|
|
int i, j, t;
|
|
|
|
if( !squares )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
p = a1 - a2 * a2 / 3;
|
|
q = (9 * a1 * a2 - 27 * a0 - 2 * a2 * a2 * a2) / 27;
|
|
D = q * q / 4 + p * p * p / 27;
|
|
|
|
if( D < 0 )
|
|
{
|
|
|
|
c1 = q / 2;
|
|
c2 = c1;
|
|
b1 = sqrt( -D );
|
|
b2 = -b1;
|
|
|
|
ro1 = sqrt( c1 * c1 - D );
|
|
ro2 = ro1;
|
|
|
|
fi1 = atan2( b1, c1 );
|
|
fi2 = -fi1;
|
|
}
|
|
else
|
|
{
|
|
|
|
c1 = q / 2 + sqrt( D );
|
|
c2 = q / 2 - sqrt( D );
|
|
b1 = 0;
|
|
b2 = 0;
|
|
|
|
ro1 = fabs( c1 );
|
|
ro2 = fabs( c2 );
|
|
fi1 = CV_PI * (1 - SIGN( c1 )) / 2;
|
|
fi2 = CV_PI * (1 - SIGN( c2 )) / 2;
|
|
} /* if */
|
|
|
|
for( i = 0; i < 6; i++ )
|
|
{
|
|
|
|
x[i][0] = -a2 / 3;
|
|
x[i][1] = 0;
|
|
x[i][2] = 0;
|
|
|
|
squares[i] = x[i][i % 2];
|
|
} /* for */
|
|
|
|
if( !REAL_ZERO( ro1 ))
|
|
{
|
|
tt = SIGN( ro1 ) * pow( fabs( ro1 ), 0.333333333333 );
|
|
c1 = tt - p / (3. * tt);
|
|
c2 = tt + p / (3. * tt);
|
|
} /* if */
|
|
|
|
if( !REAL_ZERO( ro2 ))
|
|
{
|
|
tt = SIGN( ro2 ) * pow( fabs( ro2 ), 0.333333333333 );
|
|
b1 = tt - p / (3. * tt);
|
|
b2 = tt + p / (3. * tt);
|
|
} /* if */
|
|
|
|
for( i = 0; i < 6; i++ )
|
|
{
|
|
|
|
if( i < 3 )
|
|
{
|
|
|
|
if( !REAL_ZERO( ro1 ))
|
|
{
|
|
|
|
x[i][0] = cos( fi1 / 3. + 2 * CV_PI * (i % 3) / 3. ) * c1 - a2 / 3;
|
|
x[i][1] = sin( fi1 / 3. + 2 * CV_PI * (i % 3) / 3. ) * c2;
|
|
}
|
|
else
|
|
{
|
|
|
|
x[i][2] = 1;
|
|
} /* if */
|
|
}
|
|
else
|
|
{
|
|
|
|
if( !REAL_ZERO( ro2 ))
|
|
{
|
|
|
|
x[i][0] = cos( fi2 / 3. + 2 * CV_PI * (i % 3) / 3. ) * b1 - a2 / 3;
|
|
x[i][1] = sin( fi2 / 3. + 2 * CV_PI * (i % 3) / 3. ) * b2;
|
|
}
|
|
else
|
|
{
|
|
|
|
x[i][2] = 1;
|
|
} /* if */
|
|
} /* if */
|
|
} /* for */
|
|
|
|
t = 0;
|
|
|
|
for( i = 0; i < 6; i++ )
|
|
{
|
|
|
|
if( !x[i][2] )
|
|
{
|
|
|
|
squares[t++] = x[i][0];
|
|
squares[t++] = x[i][1];
|
|
x[i][2] = 1;
|
|
|
|
for( j = i + 1; j < 6; j++ )
|
|
{
|
|
|
|
if( !x[j][2] && REAL_ZERO( x[i][0] - x[j][0] )
|
|
&& REAL_ZERO( x[i][1] - x[j][1] ))
|
|
{
|
|
|
|
x[j][2] = 1;
|
|
break;
|
|
} /* if */
|
|
} /* for */
|
|
} /* if */
|
|
} /* for */
|
|
return CV_NO_ERR;
|
|
} /* icvCubic */
|
|
|
|
/*======================================================================================*/
|
|
double
|
|
icvDet( double *M )
|
|
{
|
|
double value;
|
|
|
|
if( !M )
|
|
return 0;
|
|
|
|
value = M[0] * M[4] * M[8] + M[2] * M[3] * M[7] + M[1] * M[5] * M[6] -
|
|
M[2] * M[4] * M[6] - M[0] * M[5] * M[7] - M[1] * M[3] * M[8];
|
|
|
|
return value;
|
|
|
|
} /* icvDet */
|
|
|
|
/*===============================================================================*/
|
|
double
|
|
icvMinor( double *M, int x, int y )
|
|
{
|
|
int row1, row2, col1, col2;
|
|
double value;
|
|
|
|
if( !M || x < 0 || x > 2 || y < 0 || y > 2 )
|
|
return 0;
|
|
|
|
row1 = (y == 0 ? 1 : 0);
|
|
row2 = (y == 2 ? 1 : 2);
|
|
col1 = (x == 0 ? 1 : 0);
|
|
col2 = (x == 2 ? 1 : 2);
|
|
|
|
value = M[row1 * 3 + col1] * M[row2 * 3 + col2] - M[row2 * 3 + col1] * M[row1 * 3 + col2];
|
|
|
|
value *= 1 - (x + y) % 2 * 2;
|
|
|
|
return value;
|
|
|
|
} /* icvMinor */
|
|
|
|
/*======================================================================================*/
|
|
CvStatus
|
|
icvGetCoef( double *f1, double *f2, double *a2, double *a1, double *a0 )
|
|
{
|
|
double G[9], a3;
|
|
int i;
|
|
|
|
if( !f1 || !f2 || !a0 || !a1 || !a2 )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
for( i = 0; i < 9; i++ )
|
|
{
|
|
|
|
G[i] = f1[i] - f2[i];
|
|
} /* for */
|
|
|
|
a3 = icvDet( G );
|
|
|
|
if( REAL_ZERO( a3 ))
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
*a2 = 0;
|
|
*a1 = 0;
|
|
*a0 = icvDet( f2 );
|
|
|
|
for( i = 0; i < 9; i++ )
|
|
{
|
|
|
|
*a2 += f2[i] * icvMinor( G, (int) (i % 3), (int) (i / 3) );
|
|
*a1 += G[i] * icvMinor( f2, (int) (i % 3), (int) (i / 3) );
|
|
} /* for */
|
|
|
|
*a0 /= a3;
|
|
*a1 /= a3;
|
|
*a2 /= a3;
|
|
|
|
return CV_NO_ERR;
|
|
|
|
} /* icvGetCoef */
|
|
|
|
/*===========================================================================*/
|
|
double
|
|
icvMedian( int *ml, int *mr, int num, double *F )
|
|
{
|
|
double l1, l2, l3, d1, d2, value;
|
|
double *deviation;
|
|
int i, i3;
|
|
|
|
if( !ml || !mr || !F )
|
|
return -1;
|
|
|
|
deviation = (double *) cvAlloc( (num) * sizeof( double ));
|
|
|
|
if( !deviation )
|
|
return -1;
|
|
|
|
for( i = 0, i3 = 0; i < num; i++, i3 += 3 )
|
|
{
|
|
|
|
l1 = F[0] * mr[i3] + F[1] * mr[i3 + 1] + F[2];
|
|
l2 = F[3] * mr[i3] + F[4] * mr[i3 + 1] + F[5];
|
|
l3 = F[6] * mr[i3] + F[7] * mr[i3 + 1] + F[8];
|
|
|
|
d1 = (l1 * ml[i3] + l2 * ml[i3 + 1] + l3) / sqrt( l1 * l1 + l2 * l2 );
|
|
|
|
l1 = F[0] * ml[i3] + F[3] * ml[i3 + 1] + F[6];
|
|
l2 = F[1] * ml[i3] + F[4] * ml[i3 + 1] + F[7];
|
|
l3 = F[2] * ml[i3] + F[5] * ml[i3 + 1] + F[8];
|
|
|
|
d2 = (l1 * mr[i3] + l2 * mr[i3 + 1] + l3) / sqrt( l1 * l1 + l2 * l2 );
|
|
|
|
deviation[i] = (double) (d1 * d1 + d2 * d2);
|
|
} /* for */
|
|
|
|
if( icvSort( deviation, num ) != CV_NO_ERR )
|
|
{
|
|
|
|
cvFree( &deviation );
|
|
return -1;
|
|
} /* if */
|
|
|
|
value = deviation[num / 2];
|
|
cvFree( &deviation );
|
|
return value;
|
|
|
|
} /* cs_Median */
|
|
|
|
/*===========================================================================*/
|
|
CvStatus
|
|
icvSort( double *array, int length )
|
|
{
|
|
int i, j, index;
|
|
double swapd;
|
|
|
|
if( !array || length < 1 )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
for( i = 0; i < length - 1; i++ )
|
|
{
|
|
|
|
index = i;
|
|
|
|
for( j = i + 1; j < length; j++ )
|
|
{
|
|
|
|
if( array[j] < array[index] )
|
|
index = j;
|
|
} /* for */
|
|
|
|
if( index - i )
|
|
{
|
|
|
|
swapd = array[i];
|
|
array[i] = array[index];
|
|
array[index] = swapd;
|
|
} /* if */
|
|
} /* for */
|
|
|
|
return CV_NO_ERR;
|
|
|
|
} /* cs_Sort */
|
|
|
|
/*===========================================================================*/
|
|
int
|
|
icvBoltingPoints( int *ml, int *mr,
|
|
int num, double *F, double Mj, int **new_ml, int **new_mr, int *new_num )
|
|
{
|
|
double l1, l2, l3, d1, d2, sigma;
|
|
int i, j, length;
|
|
int *index;
|
|
|
|
if( !ml || !mr || num < 1 || !F || Mj < 0 )
|
|
return -1;
|
|
|
|
index = (int *) cvAlloc( (num) * sizeof( int ));
|
|
|
|
if( !index )
|
|
return -1;
|
|
|
|
length = 0;
|
|
sigma = (double) (2.5 * 1.4826 * (1 + 5. / (num - 7)) * sqrt( Mj ));
|
|
|
|
for( i = 0; i < num * 3; i += 3 )
|
|
{
|
|
|
|
l1 = F[0] * mr[i] + F[1] * mr[i + 1] + F[2];
|
|
l2 = F[3] * mr[i] + F[4] * mr[i + 1] + F[5];
|
|
l3 = F[6] * mr[i] + F[7] * mr[i + 1] + F[8];
|
|
|
|
d1 = (l1 * ml[i] + l2 * ml[i + 1] + l3) / sqrt( l1 * l1 + l2 * l2 );
|
|
|
|
l1 = F[0] * ml[i] + F[3] * ml[i + 1] + F[6];
|
|
l2 = F[1] * ml[i] + F[4] * ml[i + 1] + F[7];
|
|
l3 = F[2] * ml[i] + F[5] * ml[i + 1] + F[8];
|
|
|
|
d2 = (l1 * mr[i] + l2 * mr[i + 1] + l3) / sqrt( l1 * l1 + l2 * l2 );
|
|
|
|
if( d1 * d1 + d2 * d2 <= sigma * sigma )
|
|
{
|
|
|
|
index[i / 3] = 1;
|
|
length++;
|
|
}
|
|
else
|
|
{
|
|
|
|
index[i / 3] = 0;
|
|
} /* if */
|
|
} /* for */
|
|
|
|
*new_num = length;
|
|
|
|
*new_ml = (int *) cvAlloc( (length * 3) * sizeof( int ));
|
|
|
|
if( !new_ml )
|
|
{
|
|
|
|
cvFree( &index );
|
|
return -1;
|
|
} /* if */
|
|
|
|
*new_mr = (int *) cvAlloc( (length * 3) * sizeof( int ));
|
|
|
|
if( !new_mr )
|
|
{
|
|
|
|
cvFree( &new_ml );
|
|
cvFree( &index );
|
|
return -1;
|
|
} /* if */
|
|
|
|
j = 0;
|
|
|
|
for( i = 0; i < num * 3; )
|
|
{
|
|
|
|
if( index[i / 3] )
|
|
{
|
|
|
|
(*new_ml)[j] = ml[i];
|
|
(*new_mr)[j++] = mr[i++];
|
|
(*new_ml)[j] = ml[i];
|
|
(*new_mr)[j++] = mr[i++];
|
|
(*new_ml)[j] = ml[i];
|
|
(*new_mr)[j++] = mr[i++];
|
|
}
|
|
else
|
|
i += 3;
|
|
} /* for */
|
|
|
|
cvFree( &index );
|
|
return length;
|
|
|
|
} /* cs_BoltingPoints */
|
|
|
|
/*===========================================================================*/
|
|
CvStatus
|
|
icvPoints8( int *ml, int *mr, int num, double *F )
|
|
{
|
|
double *U;
|
|
double l1, l2, w, old_norm = -1, new_norm = -2, summ;
|
|
int i3, i9, j, num3, its = 0, a, t;
|
|
|
|
if( !ml || !mr || num < 8 || !F )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
U = (double *) cvAlloc( (num * 9) * sizeof( double ));
|
|
|
|
if( !U )
|
|
return CV_OUTOFMEM_ERR;
|
|
|
|
num3 = num * 3;
|
|
|
|
while( !REAL_ZERO( new_norm - old_norm ))
|
|
{
|
|
|
|
if( its++ > 1e+2 )
|
|
{
|
|
|
|
cvFree( &U );
|
|
return CV_BADFACTOR_ERR;
|
|
} /* if */
|
|
|
|
old_norm = new_norm;
|
|
|
|
for( i3 = 0, i9 = 0; i3 < num3; i3 += 3, i9 += 9 )
|
|
{
|
|
|
|
l1 = F[0] * mr[i3] + F[1] * mr[i3 + 1] + F[2];
|
|
l2 = F[3] * mr[i3] + F[4] * mr[i3 + 1] + F[5];
|
|
|
|
if( REAL_ZERO( l1 ) && REAL_ZERO( l2 ))
|
|
{
|
|
|
|
cvFree( &U );
|
|
return CV_BADFACTOR_ERR;
|
|
} /* if */
|
|
|
|
w = 1 / (l1 * l1 + l2 * l2);
|
|
|
|
l1 = F[0] * ml[i3] + F[3] * ml[i3 + 1] + F[6];
|
|
l2 = F[1] * ml[i3] + F[4] * ml[i3 + 1] + F[7];
|
|
|
|
if( REAL_ZERO( l1 ) && REAL_ZERO( l2 ))
|
|
{
|
|
|
|
cvFree( &U );
|
|
return CV_BADFACTOR_ERR;
|
|
} /* if */
|
|
|
|
w += 1 / (l1 * l1 + l2 * l2);
|
|
w = sqrt( w );
|
|
|
|
for( j = 0; j < 9; j++ )
|
|
{
|
|
|
|
U[i9 + j] = w * (double) ml[i3 + j / 3] * (double) mr[i3 + j % 3];
|
|
} /* for */
|
|
} /* for */
|
|
|
|
new_norm = 0;
|
|
|
|
for( a = 0; a < num; a++ )
|
|
{ /* row */
|
|
|
|
summ = 0;
|
|
|
|
for( t = 0; t < 9; t++ )
|
|
{
|
|
|
|
summ += U[a * 9 + t] * F[t];
|
|
} /* for */
|
|
|
|
new_norm += summ * summ;
|
|
} /* for */
|
|
|
|
new_norm = sqrt( new_norm );
|
|
|
|
icvAnalyticPoints8( U, num, F );
|
|
} /* while */
|
|
|
|
cvFree( &U );
|
|
return CV_NO_ERR;
|
|
|
|
} /* cs_Points8 */
|
|
|
|
/*===========================================================================*/
|
|
double
|
|
icvAnalyticPoints8( double *A, int num, double *F )
|
|
{
|
|
double *U;
|
|
double V[8 * 8];
|
|
double W[8];
|
|
double *f;
|
|
double solution[9];
|
|
double temp1[8 * 8];
|
|
double *temp2;
|
|
double *A_short;
|
|
double norm, summ, best_norm;
|
|
int num8 = num * 8, num9 = num * 9;
|
|
int i, j, j8, j9, value, a, a8, a9, a_num, b, b8, t;
|
|
|
|
/* --------- Initialization data ------------------ */
|
|
|
|
if( !A || num < 8 || !F )
|
|
return -1;
|
|
|
|
best_norm = -1;
|
|
U = (double *) cvAlloc( (num8) * sizeof( double ));
|
|
|
|
if( !U )
|
|
return -1;
|
|
|
|
f = (double *) cvAlloc( (num) * sizeof( double ));
|
|
|
|
if( !f )
|
|
{
|
|
cvFree( &U );
|
|
return -1;
|
|
} /* if */
|
|
|
|
temp2 = (double *) cvAlloc( (num8) * sizeof( double ));
|
|
|
|
if( !temp2 )
|
|
{
|
|
cvFree( &f );
|
|
cvFree( &U );
|
|
return -1;
|
|
} /* if */
|
|
|
|
A_short = (double *) cvAlloc( (num8) * sizeof( double ));
|
|
|
|
if( !A_short )
|
|
{
|
|
cvFree( &temp2 );
|
|
cvFree( &f );
|
|
cvFree( &U );
|
|
return -1;
|
|
} /* if */
|
|
|
|
for( i = 0; i < 8; i++ )
|
|
{
|
|
for( j8 = 0, j9 = 0; j9 < num9; j8 += 8, j9 += 9 )
|
|
{
|
|
A_short[j8 + i] = A[j9 + i + 1];
|
|
} /* for */
|
|
} /* for */
|
|
|
|
for( i = 0; i < 9; i++ )
|
|
{
|
|
|
|
for( j = 0, j8 = 0, j9 = 0; j < num; j++, j8 += 8, j9 += 9 )
|
|
{
|
|
|
|
f[j] = -A[j9 + i];
|
|
|
|
if( i )
|
|
A_short[j8 + i - 1] = A[j9 + i - 1];
|
|
} /* for */
|
|
|
|
value = icvSingularValueDecomposition( num, 8, A_short, W, 1, U, 1, V );
|
|
|
|
if( !value )
|
|
{ /* ----------- computing the solution ----------- */
|
|
|
|
/* ----------- W = W(-1) ----------- */
|
|
for( j = 0; j < 8; j++ )
|
|
{
|
|
if( !REAL_ZERO( W[j] ))
|
|
W[j] = 1 / W[j];
|
|
} /* for */
|
|
|
|
/* ----------- temp1 = V * W(-1) ----------- */
|
|
for( a8 = 0; a8 < 64; a8 += 8 )
|
|
{ /* row */
|
|
for( b = 0; b < 8; b++ )
|
|
{ /* column */
|
|
temp1[a8 + b] = V[a8 + b] * W[b];
|
|
} /* for */
|
|
} /* for */
|
|
|
|
/* ----------- temp2 = V * W(-1) * U(T) ----------- */
|
|
for( a8 = 0, a_num = 0; a8 < 64; a8 += 8, a_num += num )
|
|
{ /* row */
|
|
for( b = 0, b8 = 0; b < num; b++, b8 += 8 )
|
|
{ /* column */
|
|
|
|
temp2[a_num + b] = 0;
|
|
|
|
for( t = 0; t < 8; t++ )
|
|
{
|
|
|
|
temp2[a_num + b] += temp1[a8 + t] * U[b8 + t];
|
|
} /* for */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
/* ----------- solution = V * W(-1) * U(T) * f ----------- */
|
|
for( a = 0, a_num = 0; a < 8; a++, a_num += num )
|
|
{ /* row */
|
|
for( b = 0; b < num; b++ )
|
|
{ /* column */
|
|
|
|
solution[a] = 0;
|
|
|
|
for( t = 0; t < num && W[a]; t++ )
|
|
{
|
|
solution[a] += temp2[a_num + t] * f[t];
|
|
} /* for */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
for( a = 8; a > 0; a-- )
|
|
{
|
|
|
|
if( a == i )
|
|
break;
|
|
solution[a] = solution[a - 1];
|
|
} /* for */
|
|
|
|
solution[a] = 1;
|
|
|
|
norm = 0;
|
|
|
|
for( a9 = 0; a9 < num9; a9 += 9 )
|
|
{ /* row */
|
|
|
|
summ = 0;
|
|
|
|
for( t = 0; t < 9; t++ )
|
|
{
|
|
|
|
summ += A[a9 + t] * solution[t];
|
|
} /* for */
|
|
|
|
norm += summ * summ;
|
|
} /* for */
|
|
|
|
norm = sqrt( norm );
|
|
|
|
if( best_norm == -1 || norm < best_norm )
|
|
{
|
|
|
|
for( j = 0; j < 9; j++ )
|
|
F[j] = solution[j];
|
|
|
|
best_norm = norm;
|
|
} /* if */
|
|
} /* if */
|
|
} /* for */
|
|
|
|
cvFree( &A_short );
|
|
cvFree( &temp2 );
|
|
cvFree( &f );
|
|
cvFree( &U );
|
|
|
|
return best_norm;
|
|
|
|
} /* cs_AnalyticPoints8 */
|
|
|
|
/*===========================================================================*/
|
|
CvStatus
|
|
icvRank2Constraint( double *F )
|
|
{
|
|
double U[9], V[9], W[3];
|
|
double aW[3];
|
|
int i, i3, j, j3, t;
|
|
|
|
if( F == 0 )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
if( icvSingularValueDecomposition( 3, 3, F, W, 1, U, 1, V ))
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
aW[0] = fabs(W[0]);
|
|
aW[1] = fabs(W[1]);
|
|
aW[2] = fabs(W[2]);
|
|
|
|
if( aW[0] < aW[1] )
|
|
{
|
|
if( aW[0] < aW[2] )
|
|
{
|
|
|
|
if( REAL_ZERO( W[0] ))
|
|
return CV_NO_ERR;
|
|
else
|
|
W[0] = 0;
|
|
}
|
|
else
|
|
{
|
|
|
|
if( REAL_ZERO( W[2] ))
|
|
return CV_NO_ERR;
|
|
else
|
|
W[2] = 0;
|
|
} /* if */
|
|
}
|
|
else
|
|
{
|
|
|
|
if( aW[1] < aW[2] )
|
|
{
|
|
|
|
if( REAL_ZERO( W[1] ))
|
|
return CV_NO_ERR;
|
|
else
|
|
W[1] = 0;
|
|
}
|
|
else
|
|
{
|
|
if( REAL_ZERO( W[2] ))
|
|
return CV_NO_ERR;
|
|
else
|
|
W[2] = 0;
|
|
} /* if */
|
|
} /* if */
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
{
|
|
for( j3 = 0; j3 < 9; j3 += 3 )
|
|
{
|
|
U[j3 + i] *= W[i];
|
|
} /* for */
|
|
} /* for */
|
|
|
|
for( i = 0, i3 = 0; i < 3; i++, i3 += 3 )
|
|
{
|
|
for( j = 0, j3 = 0; j < 3; j++, j3 += 3 )
|
|
{
|
|
|
|
F[i3 + j] = 0;
|
|
|
|
for( t = 0; t < 3; t++ )
|
|
{
|
|
F[i3 + j] += U[i3 + t] * V[j3 + t];
|
|
} /* for */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
return CV_NO_ERR;
|
|
} /* cs_Rank2Constraint */
|
|
|
|
|
|
/*===========================================================================*/
|
|
|
|
int
|
|
icvSingularValueDecomposition( int M,
|
|
int N,
|
|
double *A,
|
|
double *W, int get_U, double *U, int get_V, double *V )
|
|
{
|
|
int i = 0, j, k, l = 0, i1, k1, l1 = 0;
|
|
int iterations, error = 0, jN, iN, kN, lN = 0;
|
|
double *rv1;
|
|
double c, f, g, h, s, x, y, z, scale, anorm;
|
|
double af, ag, ah, t;
|
|
int MN = M * N;
|
|
int NN = N * N;
|
|
|
|
/* max_iterations - maximum number QR-iterations
|
|
cc - reduces requirements to number stitch (cc>1)
|
|
*/
|
|
|
|
int max_iterations = 100;
|
|
double cc = 100;
|
|
|
|
if( M < N )
|
|
return N;
|
|
|
|
rv1 = (double *) cvAlloc( N * sizeof( double ));
|
|
|
|
if( rv1 == 0 )
|
|
return N;
|
|
|
|
for( iN = 0; iN < MN; iN += N )
|
|
{
|
|
for( j = 0; j < N; j++ )
|
|
U[iN + j] = A[iN + j];
|
|
} /* for */
|
|
|
|
/* Adduction to bidiagonal type (transformations of reflection).
|
|
Bidiagonal matrix is located in W (diagonal elements)
|
|
and in rv1 (upperdiagonal elements)
|
|
*/
|
|
|
|
g = 0;
|
|
scale = 0;
|
|
anorm = 0;
|
|
|
|
for( i = 0, iN = 0; i < N; i++, iN += N )
|
|
{
|
|
|
|
l = i + 1;
|
|
lN = iN + N;
|
|
rv1[i] = scale * g;
|
|
|
|
/* Multiplyings on the left */
|
|
|
|
g = 0;
|
|
s = 0;
|
|
scale = 0;
|
|
|
|
for( kN = iN; kN < MN; kN += N )
|
|
scale += fabs( U[kN + i] );
|
|
|
|
if( !REAL_ZERO( scale ))
|
|
{
|
|
|
|
for( kN = iN; kN < MN; kN += N )
|
|
{
|
|
|
|
U[kN + i] /= scale;
|
|
s += U[kN + i] * U[kN + i];
|
|
} /* for */
|
|
|
|
f = U[iN + i];
|
|
g = -sqrt( s ) * Sgn( f );
|
|
h = f * g - s;
|
|
U[iN + i] = f - g;
|
|
|
|
for( j = l; j < N; j++ )
|
|
{
|
|
|
|
s = 0;
|
|
|
|
for( kN = iN; kN < MN; kN += N )
|
|
{
|
|
|
|
s += U[kN + i] * U[kN + j];
|
|
} /* for */
|
|
|
|
f = s / h;
|
|
|
|
for( kN = iN; kN < MN; kN += N )
|
|
{
|
|
|
|
U[kN + j] += f * U[kN + i];
|
|
} /* for */
|
|
} /* for */
|
|
|
|
for( kN = iN; kN < MN; kN += N )
|
|
U[kN + i] *= scale;
|
|
} /* if */
|
|
|
|
W[i] = scale * g;
|
|
|
|
/* Multiplyings on the right */
|
|
|
|
g = 0;
|
|
s = 0;
|
|
scale = 0;
|
|
|
|
for( k = l; k < N; k++ )
|
|
scale += fabs( U[iN + k] );
|
|
|
|
if( !REAL_ZERO( scale ))
|
|
{
|
|
|
|
for( k = l; k < N; k++ )
|
|
{
|
|
|
|
U[iN + k] /= scale;
|
|
s += (U[iN + k]) * (U[iN + k]);
|
|
} /* for */
|
|
|
|
f = U[iN + l];
|
|
g = -sqrt( s ) * Sgn( f );
|
|
h = f * g - s;
|
|
U[i * N + l] = f - g;
|
|
|
|
for( k = l; k < N; k++ )
|
|
rv1[k] = U[iN + k] / h;
|
|
|
|
for( jN = lN; jN < MN; jN += N )
|
|
{
|
|
|
|
s = 0;
|
|
|
|
for( k = l; k < N; k++ )
|
|
s += U[jN + k] * U[iN + k];
|
|
|
|
for( k = l; k < N; k++ )
|
|
U[jN + k] += s * rv1[k];
|
|
|
|
} /* for */
|
|
|
|
for( k = l; k < N; k++ )
|
|
U[iN + k] *= scale;
|
|
} /* if */
|
|
|
|
t = fabs( W[i] );
|
|
t += fabs( rv1[i] );
|
|
anorm = MAX( anorm, t );
|
|
} /* for */
|
|
|
|
anorm *= cc;
|
|
|
|
/* accumulation of right transformations, if needed */
|
|
|
|
if( get_V )
|
|
{
|
|
|
|
for( i = N - 1, iN = NN - N; i >= 0; i--, iN -= N )
|
|
{
|
|
|
|
if( i < N - 1 )
|
|
{
|
|
|
|
/* pass-by small g */
|
|
if( !REAL_ZERO( g ))
|
|
{
|
|
|
|
for( j = l, jN = lN; j < N; j++, jN += N )
|
|
V[jN + i] = U[iN + j] / U[iN + l] / g;
|
|
|
|
for( j = l; j < N; j++ )
|
|
{
|
|
|
|
s = 0;
|
|
|
|
for( k = l, kN = lN; k < N; k++, kN += N )
|
|
s += U[iN + k] * V[kN + j];
|
|
|
|
for( kN = lN; kN < NN; kN += N )
|
|
V[kN + j] += s * V[kN + i];
|
|
} /* for */
|
|
} /* if */
|
|
|
|
for( j = l, jN = lN; j < N; j++, jN += N )
|
|
{
|
|
V[iN + j] = 0;
|
|
V[jN + i] = 0;
|
|
} /* for */
|
|
} /* if */
|
|
|
|
V[iN + i] = 1;
|
|
g = rv1[i];
|
|
l = i;
|
|
lN = iN;
|
|
} /* for */
|
|
} /* if */
|
|
|
|
/* accumulation of left transformations, if needed */
|
|
|
|
if( get_U )
|
|
{
|
|
|
|
for( i = N - 1, iN = NN - N; i >= 0; i--, iN -= N )
|
|
{
|
|
|
|
l = i + 1;
|
|
lN = iN + N;
|
|
g = W[i];
|
|
|
|
for( j = l; j < N; j++ )
|
|
U[iN + j] = 0;
|
|
|
|
/* pass-by small g */
|
|
if( !REAL_ZERO( g ))
|
|
{
|
|
|
|
for( j = l; j < N; j++ )
|
|
{
|
|
|
|
s = 0;
|
|
|
|
for( kN = lN; kN < MN; kN += N )
|
|
s += U[kN + i] * U[kN + j];
|
|
|
|
f = s / U[iN + i] / g;
|
|
|
|
for( kN = iN; kN < MN; kN += N )
|
|
U[kN + j] += f * U[kN + i];
|
|
} /* for */
|
|
|
|
for( jN = iN; jN < MN; jN += N )
|
|
U[jN + i] /= g;
|
|
}
|
|
else
|
|
{
|
|
|
|
for( jN = iN; jN < MN; jN += N )
|
|
U[jN + i] = 0;
|
|
} /* if */
|
|
|
|
U[iN + i] += 1;
|
|
} /* for */
|
|
} /* if */
|
|
|
|
/* Iterations QR-algorithm for bidiagonal matrixes
|
|
W[i] - is the main diagonal
|
|
rv1[i] - is the top diagonal, rv1[0]=0.
|
|
*/
|
|
|
|
for( k = N - 1; k >= 0; k-- )
|
|
{
|
|
|
|
k1 = k - 1;
|
|
iterations = 0;
|
|
|
|
for( ;; )
|
|
{
|
|
|
|
/* Cycle: checking a possibility of fission matrix */
|
|
for( l = k; l >= 0; l-- )
|
|
{
|
|
|
|
l1 = l - 1;
|
|
|
|
if( REAL_ZERO( rv1[l] ) || REAL_ZERO( W[l1] ))
|
|
break;
|
|
} /* for */
|
|
|
|
if( !REAL_ZERO( rv1[l] ))
|
|
{
|
|
|
|
/* W[l1] = 0, matrix possible to fission
|
|
by clearing out rv1[l] */
|
|
|
|
c = 0;
|
|
s = 1;
|
|
|
|
for( i = l; i <= k; i++ )
|
|
{
|
|
|
|
f = s * rv1[i];
|
|
rv1[i] = c * rv1[i];
|
|
|
|
/* Rotations are done before the end of the block,
|
|
or when element in the line is finagle.
|
|
*/
|
|
|
|
if( REAL_ZERO( f ))
|
|
break;
|
|
|
|
g = W[i];
|
|
|
|
/* Scaling prevents finagling H ( F!=0!) */
|
|
|
|
af = fabs( f );
|
|
ag = fabs( g );
|
|
|
|
if( af < ag )
|
|
h = ag * sqrt( 1 + (f / g) * (f / g) );
|
|
else
|
|
h = af * sqrt( 1 + (f / g) * (f / g) );
|
|
|
|
W[i] = h;
|
|
c = g / h;
|
|
s = -f / h;
|
|
|
|
if( get_U )
|
|
{
|
|
|
|
for( jN = 0; jN < MN; jN += N )
|
|
{
|
|
|
|
y = U[jN + l1];
|
|
z = U[jN + i];
|
|
U[jN + l1] = y * c + z * s;
|
|
U[jN + i] = -y * s + z * c;
|
|
} /* for */
|
|
} /* if */
|
|
} /* for */
|
|
} /* if */
|
|
|
|
|
|
/* Output in this place of program means,
|
|
that rv1[L] = 0, matrix fissioned
|
|
Iterations of the process of the persecution
|
|
will be executed always for
|
|
the bottom block ( from l before k ),
|
|
with increase l possible.
|
|
*/
|
|
|
|
z = W[k];
|
|
|
|
if( l == k )
|
|
break;
|
|
|
|
/* Completion iterations: lower block
|
|
became trivial ( rv1[K]=0) */
|
|
|
|
if( iterations++ == max_iterations )
|
|
return k;
|
|
|
|
/* Shift is computed on the lowest order 2 minor. */
|
|
|
|
x = W[l];
|
|
y = W[k1];
|
|
g = rv1[k1];
|
|
h = rv1[k];
|
|
|
|
/* consequent fission prevents forming a machine zero */
|
|
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2 * h) / y;
|
|
|
|
/* prevented overflow */
|
|
if( fabs( f ) > 1 )
|
|
{
|
|
g = fabs( f );
|
|
g *= sqrt( 1 + (1 / f) * (1 / f) );
|
|
}
|
|
else
|
|
g = sqrt( f * f + 1 );
|
|
|
|
f = ((x - z) * (x + z) + h * (y / (f + fabs( g ) * Sgn( f )) - h)) / x;
|
|
c = 1;
|
|
s = 1;
|
|
|
|
for( i1 = l; i1 <= k1; i1++ )
|
|
{
|
|
|
|
i = i1 + 1;
|
|
g = rv1[i];
|
|
y = W[i];
|
|
h = s * g;
|
|
g *= c;
|
|
|
|
/* Scaling at calculation Z prevents its clearing,
|
|
however if F and H both are zero - pass-by of fission on Z.
|
|
*/
|
|
|
|
af = fabs( f );
|
|
ah = fabs( h );
|
|
|
|
if( af < ah )
|
|
z = ah * sqrt( 1 + (f / h) * (f / h) );
|
|
|
|
else
|
|
{
|
|
|
|
z = 0;
|
|
if( !REAL_ZERO( af ))
|
|
z = af * sqrt( 1 + (h / f) * (h / f) );
|
|
} /* if */
|
|
|
|
rv1[i1] = z;
|
|
|
|
/* if Z=0, the rotation is free. */
|
|
if( !REAL_ZERO( z ))
|
|
{
|
|
|
|
c = f / z;
|
|
s = h / z;
|
|
} /* if */
|
|
|
|
f = x * c + g * s;
|
|
g = -x * s + g * c;
|
|
h = y * s;
|
|
y *= c;
|
|
|
|
if( get_V )
|
|
{
|
|
|
|
for( jN = 0; jN < NN; jN += N )
|
|
{
|
|
|
|
x = V[jN + i1];
|
|
z = V[jN + i];
|
|
V[jN + i1] = x * c + z * s;
|
|
V[jN + i] = -x * s + z * c;
|
|
} /* for */
|
|
} /* if */
|
|
|
|
af = fabs( f );
|
|
ah = fabs( h );
|
|
|
|
if( af < ah )
|
|
z = ah * sqrt( 1 + (f / h) * (f / h) );
|
|
else
|
|
{
|
|
|
|
z = 0;
|
|
if( !REAL_ZERO( af ))
|
|
z = af * sqrt( 1 + (h / f) * (h / f) );
|
|
} /* if */
|
|
|
|
W[i1] = z;
|
|
|
|
if( !REAL_ZERO( z ))
|
|
{
|
|
|
|
c = f / z;
|
|
s = h / z;
|
|
} /* if */
|
|
|
|
f = c * g + s * y;
|
|
x = -s * g + c * y;
|
|
|
|
if( get_U )
|
|
{
|
|
|
|
for( jN = 0; jN < MN; jN += N )
|
|
{
|
|
|
|
y = U[jN + i1];
|
|
z = U[jN + i];
|
|
U[jN + i1] = y * c + z * s;
|
|
U[jN + i] = -y * s + z * c;
|
|
} /* for */
|
|
} /* if */
|
|
} /* for */
|
|
|
|
rv1[l] = 0;
|
|
rv1[k] = f;
|
|
W[k] = x;
|
|
} /* for */
|
|
|
|
if( z < 0 )
|
|
{
|
|
|
|
W[k] = -z;
|
|
|
|
if( get_V )
|
|
{
|
|
|
|
for( jN = 0; jN < NN; jN += N )
|
|
V[jN + k] *= -1;
|
|
} /* if */
|
|
} /* if */
|
|
} /* for */
|
|
|
|
cvFree( &rv1 );
|
|
|
|
return error;
|
|
|
|
} /* vm_SingularValueDecomposition */
|
|
|
|
/*========================================================================*/
|
|
|
|
/* Obsolete functions. Just for ViewMorping */
|
|
/*=====================================================================================*/
|
|
|
|
int
|
|
icvGaussMxN( double *A, double *B, int M, int N, double **solutions )
|
|
{
|
|
int *variables;
|
|
int row, swapi, i, i_best = 0, j, j_best = 0, t;
|
|
double swapd, ratio, bigest;
|
|
|
|
if( !A || !B || !M || !N )
|
|
return -1;
|
|
|
|
variables = (int *) cvAlloc( (size_t) N * sizeof( int ));
|
|
|
|
if( variables == 0 )
|
|
return -1;
|
|
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
variables[i] = i;
|
|
} /* for */
|
|
|
|
/* ----- Direct way ----- */
|
|
|
|
for( row = 0; row < M; row++ )
|
|
{
|
|
|
|
bigest = 0;
|
|
|
|
for( j = row; j < M; j++ )
|
|
{ /* search non null element */
|
|
for( i = row; i < N; i++ )
|
|
{
|
|
double a = fabs( A[j * N + i] ), b = fabs( bigest );
|
|
if( a > b )
|
|
{
|
|
bigest = A[j * N + i];
|
|
i_best = i;
|
|
j_best = j;
|
|
} /* if */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
if( REAL_ZERO( bigest ))
|
|
break; /* if all shank elements are null */
|
|
|
|
if( j_best - row )
|
|
{
|
|
|
|
for( t = 0; t < N; t++ )
|
|
{ /* swap a rows */
|
|
|
|
swapd = A[row * N + t];
|
|
A[row * N + t] = A[j_best * N + t];
|
|
A[j_best * N + t] = swapd;
|
|
} /* for */
|
|
|
|
swapd = B[row];
|
|
B[row] = B[j_best];
|
|
B[j_best] = swapd;
|
|
} /* if */
|
|
|
|
if( i_best - row )
|
|
{
|
|
|
|
for( t = 0; t < M; t++ )
|
|
{ /* swap a columns */
|
|
|
|
swapd = A[t * N + i_best];
|
|
A[t * N + i_best] = A[t * N + row];
|
|
A[t * N + row] = swapd;
|
|
} /* for */
|
|
|
|
swapi = variables[row];
|
|
variables[row] = variables[i_best];
|
|
variables[i_best] = swapi;
|
|
} /* if */
|
|
|
|
for( i = row + 1; i < M; i++ )
|
|
{ /* recounting A and B */
|
|
|
|
ratio = -A[i * N + row] / A[row * N + row];
|
|
B[i] += B[row] * ratio;
|
|
|
|
for( j = N - 1; j >= row; j-- )
|
|
{
|
|
|
|
A[i * N + j] += A[row * N + j] * ratio;
|
|
} /* for */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
if( row < M )
|
|
{ /* if rank(A)<M */
|
|
|
|
for( j = row; j < M; j++ )
|
|
{
|
|
if( !REAL_ZERO( B[j] ))
|
|
{
|
|
|
|
cvFree( &variables );
|
|
return -1; /* if system is antithetic */
|
|
} /* if */
|
|
} /* for */
|
|
|
|
M = row; /* decreasing size of the task */
|
|
} /* if */
|
|
|
|
/* ----- Reverse way ----- */
|
|
|
|
if( M < N )
|
|
{ /* if solution are not exclusive */
|
|
|
|
*solutions = (double *) cvAlloc( ((N - M + 1) * N) * sizeof( double ));
|
|
|
|
if( *solutions == 0 )
|
|
{
|
|
cvFree( &variables );
|
|
return -1;
|
|
}
|
|
|
|
|
|
for( t = M; t <= N; t++ )
|
|
{
|
|
for( j = M; j < N; j++ )
|
|
{
|
|
|
|
(*solutions)[(t - M) * N + variables[j]] = (double) (t == j);
|
|
} /* for */
|
|
|
|
for( i = M - 1; i >= 0; i-- )
|
|
{ /* finding component of solution */
|
|
|
|
if( t < N )
|
|
{
|
|
(*solutions)[(t - M) * N + variables[i]] = 0;
|
|
}
|
|
else
|
|
{
|
|
(*solutions)[(t - M) * N + variables[i]] = B[i] / A[i * N + i];
|
|
} /* if */
|
|
|
|
for( j = i + 1; j < N; j++ )
|
|
{
|
|
|
|
(*solutions)[(t - M) * N + variables[i]] -=
|
|
(*solutions)[(t - M) * N + variables[j]] * A[i * N + j] / A[i * N + i];
|
|
} /* for */
|
|
} /* for */
|
|
} /* for */
|
|
|
|
cvFree( &variables );
|
|
return N - M;
|
|
} /* if */
|
|
|
|
*solutions = (double *) cvAlloc( (N) * sizeof( double ));
|
|
|
|
if( solutions == 0 )
|
|
return -1;
|
|
|
|
for( i = N - 1; i >= 0; i-- )
|
|
{ /* finding exclusive solution */
|
|
|
|
(*solutions)[variables[i]] = B[i] / A[i * N + i];
|
|
|
|
for( j = i + 1; j < N; j++ )
|
|
{
|
|
|
|
(*solutions)[variables[i]] -=
|
|
(*solutions)[variables[j]] * A[i * N + j] / A[i * N + i];
|
|
} /* for */
|
|
} /* for */
|
|
|
|
cvFree( &variables );
|
|
return 0;
|
|
|
|
} /* icvGaussMxN */
|
|
|
|
|
|
/*======================================================================================*/
|
|
/*F///////////////////////////////////////////////////////////////////////////////////////
|
|
// Name: icvPoint7
|
|
// Purpose:
|
|
//
|
|
//
|
|
// Context:
|
|
// Parameters:
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
// Returns:
|
|
// CV_NO_ERR if all Ok or error code
|
|
// Notes:
|
|
//F*/
|
|
|
|
CvStatus
|
|
icvPoint7( int *ml, int *mr, double *F, int *amount )
|
|
{
|
|
double A[63], B[7];
|
|
double *solutions;
|
|
double a2, a1, a0;
|
|
double squares[6];
|
|
int i, j;
|
|
|
|
/* int amount; */
|
|
/* float* F; */
|
|
|
|
CvStatus error = CV_BADFACTOR_ERR;
|
|
|
|
/* F = (float*)matrix->m; */
|
|
|
|
if( !ml || !mr || !F )
|
|
return CV_BADFACTOR_ERR;
|
|
|
|
for( i = 0; i < 7; i++ )
|
|
{
|
|
for( j = 0; j < 9; j++ )
|
|
{
|
|
|
|
A[i * 9 + j] = (double) ml[i * 3 + j / 3] * (double) mr[i * 3 + j % 3];
|
|
} /* for */
|
|
B[i] = 0;
|
|
} /* for */
|
|
|
|
*amount = 0;
|
|
|
|
if( icvGaussMxN( A, B, 7, 9, &solutions ) == 2 )
|
|
{
|
|
if( icvGetCoef( solutions, solutions + 9, &a2, &a1, &a0 ) == CV_NO_ERR )
|
|
{
|
|
icvCubic( a2, a1, a0, squares );
|
|
|
|
for( i = 0; i < 1; i++ )
|
|
{
|
|
|
|
if( REAL_ZERO( squares[i * 2 + 1] ))
|
|
{
|
|
|
|
for( j = 0; j < 9; j++ )
|
|
{
|
|
|
|
F[*amount + j] = (float) (squares[i] * solutions[j] +
|
|
(1 - squares[i]) * solutions[j + 9]);
|
|
} /* for */
|
|
|
|
*amount += 9;
|
|
|
|
error = CV_NO_ERR;
|
|
} /* if */
|
|
} /* for */
|
|
|
|
cvFree( &solutions );
|
|
return error;
|
|
}
|
|
else
|
|
{
|
|
cvFree( &solutions );
|
|
} /* if */
|
|
|
|
}
|
|
else
|
|
{
|
|
cvFree( &solutions );
|
|
} /* if */
|
|
|
|
return error;
|
|
} /* icvPoint7 */
|
|
|