mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 09:49:13 +08:00
95ff928228
This sample models the Text Detection demo from OMZ: https://github.com/openvinotoolkit/open_model_zoo/tree/2020.4/demos/text_detection_demo Also: renamed cv::gapi::size() to cv::gapi::streaming::size()
699 lines
27 KiB
C++
699 lines
27 KiB
C++
#include <algorithm>
|
|
#include <cctype>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <opencv2/gapi.hpp>
|
|
#include <opencv2/gapi/core.hpp>
|
|
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
|
#include <opencv2/gapi/infer.hpp>
|
|
#include <opencv2/gapi/infer/ie.hpp>
|
|
#include <opencv2/gapi/streaming/cap.hpp>
|
|
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/core/utility.hpp>
|
|
|
|
const std::string about =
|
|
"This is an OpenCV-based version of OMZ Text Detection example";
|
|
const std::string keys =
|
|
"{ h help | | Print this help message }"
|
|
"{ input | | Path to the input video file }"
|
|
"{ tdm | text-detection-0004.xml | Path to OpenVINO text detection model (.xml), versions 0003 and 0004 work }"
|
|
"{ tdd | CPU | Target device for the text detector (e.g. CPU, GPU, VPU, ...) }"
|
|
"{ trm | text-recognition-0012.xml | Path to OpenVINO text recognition model (.xml) }"
|
|
"{ trd | CPU | Target device for the text recognition (e.g. CPU, GPU, VPU, ...) }"
|
|
"{ bw | 0 | CTC beam search decoder bandwidth, if 0, a CTC greedy decoder is used}"
|
|
"{ sset | 0123456789abcdefghijklmnopqrstuvwxyz | Symbol set to use with text recognition decoder. Shouldn't contain symbol #. }"
|
|
"{ thr | 0.2 | Text recognition confidence threshold}"
|
|
;
|
|
|
|
namespace {
|
|
std::string weights_path(const std::string &model_path) {
|
|
const auto EXT_LEN = 4u;
|
|
const auto sz = model_path.size();
|
|
CV_Assert(sz > EXT_LEN);
|
|
|
|
const auto ext = model_path.substr(sz - EXT_LEN);
|
|
CV_Assert(cv::toLowerCase(ext) == ".xml");
|
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Taken from OMZ samples as-is
|
|
template<typename Iter>
|
|
void softmax_and_choose(Iter begin, Iter end, int *argmax, float *prob) {
|
|
auto max_element = std::max_element(begin, end);
|
|
*argmax = static_cast<int>(std::distance(begin, max_element));
|
|
float max_val = *max_element;
|
|
double sum = 0;
|
|
for (auto i = begin; i != end; i++) {
|
|
sum += std::exp((*i) - max_val);
|
|
}
|
|
if (std::fabs(sum) < std::numeric_limits<double>::epsilon()) {
|
|
throw std::logic_error("sum can't be equal to zero");
|
|
}
|
|
*prob = 1.0f / static_cast<float>(sum);
|
|
}
|
|
|
|
template<typename Iter>
|
|
std::vector<float> softmax(Iter begin, Iter end) {
|
|
std::vector<float> prob(end - begin, 0.f);
|
|
std::transform(begin, end, prob.begin(), [](float x) { return std::exp(x); });
|
|
float sum = std::accumulate(prob.begin(), prob.end(), 0.0f);
|
|
for (int i = 0; i < static_cast<int>(prob.size()); i++)
|
|
prob[i] /= sum;
|
|
return prob;
|
|
}
|
|
|
|
struct BeamElement {
|
|
std::vector<int> sentence; //!< The sequence of chars that will be a result of the beam element
|
|
|
|
float prob_blank; //!< The probability that the last char in CTC sequence
|
|
//!< for the beam element is the special blank char
|
|
|
|
float prob_not_blank; //!< The probability that the last char in CTC sequence
|
|
//!< for the beam element is NOT the special blank char
|
|
|
|
float prob() const { //!< The probability of the beam element.
|
|
return prob_blank + prob_not_blank;
|
|
}
|
|
};
|
|
|
|
std::string CTCGreedyDecoder(const float *data,
|
|
const std::size_t sz,
|
|
const std::string &alphabet,
|
|
const char pad_symbol,
|
|
double *conf) {
|
|
std::string res = "";
|
|
bool prev_pad = false;
|
|
*conf = 1;
|
|
|
|
const auto num_classes = alphabet.length();
|
|
for (auto it = data; it != (data+sz); it += num_classes) {
|
|
int argmax = 0;
|
|
float prob = 0.f;
|
|
|
|
softmax_and_choose(it, it + num_classes, &argmax, &prob);
|
|
(*conf) *= prob;
|
|
|
|
auto symbol = alphabet[argmax];
|
|
if (symbol != pad_symbol) {
|
|
if (res.empty() || prev_pad || (!res.empty() && symbol != res.back())) {
|
|
prev_pad = false;
|
|
res += symbol;
|
|
}
|
|
} else {
|
|
prev_pad = true;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
std::string CTCBeamSearchDecoder(const float *data,
|
|
const std::size_t sz,
|
|
const std::string &alphabet,
|
|
double *conf,
|
|
int bandwidth) {
|
|
const auto num_classes = alphabet.length();
|
|
|
|
std::vector<BeamElement> curr;
|
|
std::vector<BeamElement> last;
|
|
|
|
last.push_back(BeamElement{std::vector<int>(), 1.f, 0.f});
|
|
|
|
for (auto it = data; it != (data+sz); it += num_classes) {
|
|
curr.clear();
|
|
|
|
std::vector<float> prob = softmax(it, it + num_classes);
|
|
|
|
for(const auto& candidate: last) {
|
|
float prob_not_blank = 0.f;
|
|
const std::vector<int>& candidate_sentence = candidate.sentence;
|
|
if (!candidate_sentence.empty()) {
|
|
int n = candidate_sentence.back();
|
|
prob_not_blank = candidate.prob_not_blank * prob[n];
|
|
}
|
|
float prob_blank = candidate.prob() * prob[num_classes - 1];
|
|
|
|
auto check_res = std::find_if(curr.begin(),
|
|
curr.end(),
|
|
[&candidate_sentence](const BeamElement& n) {
|
|
return n.sentence == candidate_sentence;
|
|
});
|
|
if (check_res == std::end(curr)) {
|
|
curr.push_back(BeamElement{candidate.sentence, prob_blank, prob_not_blank});
|
|
} else {
|
|
check_res->prob_not_blank += prob_not_blank;
|
|
if (check_res->prob_blank != 0.f) {
|
|
throw std::logic_error("Probability that the last char in CTC-sequence "
|
|
"is the special blank char must be zero here");
|
|
}
|
|
check_res->prob_blank = prob_blank;
|
|
}
|
|
|
|
for (int i = 0; i < static_cast<int>(num_classes) - 1; i++) {
|
|
auto extend = candidate_sentence;
|
|
extend.push_back(i);
|
|
|
|
if (candidate_sentence.size() > 0 && candidate.sentence.back() == i) {
|
|
prob_not_blank = prob[i] * candidate.prob_blank;
|
|
} else {
|
|
prob_not_blank = prob[i] * candidate.prob();
|
|
}
|
|
|
|
auto check_res2 = std::find_if(curr.begin(),
|
|
curr.end(),
|
|
[&extend](const BeamElement &n) {
|
|
return n.sentence == extend;
|
|
});
|
|
if (check_res2 == std::end(curr)) {
|
|
curr.push_back(BeamElement{extend, 0.f, prob_not_blank});
|
|
} else {
|
|
check_res2->prob_not_blank += prob_not_blank;
|
|
}
|
|
}
|
|
}
|
|
|
|
sort(curr.begin(), curr.end(), [](const BeamElement &a, const BeamElement &b) -> bool {
|
|
return a.prob() > b.prob();
|
|
});
|
|
|
|
last.clear();
|
|
int num_to_copy = std::min(bandwidth, static_cast<int>(curr.size()));
|
|
for (int b = 0; b < num_to_copy; b++) {
|
|
last.push_back(curr[b]);
|
|
}
|
|
}
|
|
|
|
*conf = last[0].prob();
|
|
std::string res="";
|
|
for (const auto& idx: last[0].sentence) {
|
|
res += alphabet[idx];
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
} // anonymous namespace
|
|
|
|
namespace custom {
|
|
namespace {
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Define networks for this sample
|
|
using GMat2 = std::tuple<cv::GMat, cv::GMat>;
|
|
G_API_NET(TextDetection,
|
|
<GMat2(cv::GMat)>,
|
|
"sample.custom.text_detect");
|
|
|
|
G_API_NET(TextRecognition,
|
|
<cv::GMat(cv::GMat)>,
|
|
"sample.custom.text_recogn");
|
|
|
|
// Define custom operations
|
|
using GSize = cv::GOpaque<cv::Size>;
|
|
using GRRects = cv::GArray<cv::RotatedRect>;
|
|
G_API_OP(PostProcess,
|
|
<GRRects(cv::GMat,cv::GMat,GSize,float,float)>,
|
|
"sample.custom.text.post_proc") {
|
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &,
|
|
const cv::GMatDesc &,
|
|
const cv::GOpaqueDesc &,
|
|
float,
|
|
float) {
|
|
return cv::empty_array_desc();
|
|
}
|
|
};
|
|
|
|
using GMats = cv::GArray<cv::GMat>;
|
|
G_API_OP(CropLabels,
|
|
<GMats(cv::GMat,GRRects,GSize)>,
|
|
"sample.custom.text.crop") {
|
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &,
|
|
const cv::GArrayDesc &,
|
|
const cv::GOpaqueDesc &) {
|
|
return cv::empty_array_desc();
|
|
}
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Implement custom operations
|
|
GAPI_OCV_KERNEL(OCVPostProcess, PostProcess) {
|
|
static void run(const cv::Mat &link,
|
|
const cv::Mat &segm,
|
|
const cv::Size &img_size,
|
|
const float link_threshold,
|
|
const float segm_threshold,
|
|
std::vector<cv::RotatedRect> &out) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
const int kMinArea = 300;
|
|
const int kMinHeight = 10;
|
|
|
|
const float *link_data_pointer = link.ptr<float>();
|
|
std::vector<float> link_data(link_data_pointer, link_data_pointer + link.total());
|
|
link_data = transpose4d(link_data, dimsToShape(link.size), {0, 2, 3, 1});
|
|
softmax(link_data);
|
|
link_data = sliceAndGetSecondChannel(link_data);
|
|
std::vector<int> new_link_data_shape = {
|
|
link.size[0],
|
|
link.size[2],
|
|
link.size[3],
|
|
link.size[1]/2,
|
|
};
|
|
|
|
const float *cls_data_pointer = segm.ptr<float>();
|
|
std::vector<float> cls_data(cls_data_pointer, cls_data_pointer + segm.total());
|
|
cls_data = transpose4d(cls_data, dimsToShape(segm.size), {0, 2, 3, 1});
|
|
softmax(cls_data);
|
|
cls_data = sliceAndGetSecondChannel(cls_data);
|
|
std::vector<int> new_cls_data_shape = {
|
|
segm.size[0],
|
|
segm.size[2],
|
|
segm.size[3],
|
|
segm.size[1]/2,
|
|
};
|
|
|
|
out = maskToBoxes(decodeImageByJoin(cls_data, new_cls_data_shape,
|
|
link_data, new_link_data_shape,
|
|
segm_threshold, link_threshold),
|
|
static_cast<float>(kMinArea),
|
|
static_cast<float>(kMinHeight),
|
|
img_size);
|
|
}
|
|
|
|
static std::vector<std::size_t> dimsToShape(const cv::MatSize &sz) {
|
|
const int n_dims = sz.dims();
|
|
std::vector<std::size_t> result;
|
|
result.reserve(n_dims);
|
|
|
|
// cv::MatSize is not iterable...
|
|
for (int i = 0; i < n_dims; i++) {
|
|
result.emplace_back(static_cast<std::size_t>(sz[i]));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void softmax(std::vector<float> &rdata) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
const size_t last_dim = 2;
|
|
for (size_t i = 0 ; i < rdata.size(); i+=last_dim) {
|
|
float m = std::max(rdata[i], rdata[i+1]);
|
|
rdata[i] = std::exp(rdata[i] - m);
|
|
rdata[i + 1] = std::exp(rdata[i + 1] - m);
|
|
float s = rdata[i] + rdata[i + 1];
|
|
rdata[i] /= s;
|
|
rdata[i + 1] /= s;
|
|
}
|
|
}
|
|
|
|
static std::vector<float> transpose4d(const std::vector<float> &data,
|
|
const std::vector<size_t> &shape,
|
|
const std::vector<size_t> &axes) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
if (shape.size() != axes.size())
|
|
throw std::runtime_error("Shape and axes must have the same dimension.");
|
|
|
|
for (size_t a : axes) {
|
|
if (a >= shape.size())
|
|
throw std::runtime_error("Axis must be less than dimension of shape.");
|
|
}
|
|
size_t total_size = shape[0]*shape[1]*shape[2]*shape[3];
|
|
std::vector<size_t> steps {
|
|
shape[axes[1]]*shape[axes[2]]*shape[axes[3]],
|
|
shape[axes[2]]*shape[axes[3]],
|
|
shape[axes[3]],
|
|
1
|
|
};
|
|
|
|
size_t source_data_idx = 0;
|
|
std::vector<float> new_data(total_size, 0);
|
|
std::vector<size_t> ids(shape.size());
|
|
for (ids[0] = 0; ids[0] < shape[0]; ids[0]++) {
|
|
for (ids[1] = 0; ids[1] < shape[1]; ids[1]++) {
|
|
for (ids[2] = 0; ids[2] < shape[2]; ids[2]++) {
|
|
for (ids[3]= 0; ids[3] < shape[3]; ids[3]++) {
|
|
size_t new_data_idx = ids[axes[0]]*steps[0] + ids[axes[1]]*steps[1] +
|
|
ids[axes[2]]*steps[2] + ids[axes[3]]*steps[3];
|
|
new_data[new_data_idx] = data[source_data_idx++];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return new_data;
|
|
}
|
|
|
|
static std::vector<float> sliceAndGetSecondChannel(const std::vector<float> &data) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
std::vector<float> new_data(data.size() / 2, 0);
|
|
for (size_t i = 0; i < data.size() / 2; i++) {
|
|
new_data[i] = data[2 * i + 1];
|
|
}
|
|
return new_data;
|
|
}
|
|
|
|
static void join(const int p1,
|
|
const int p2,
|
|
std::unordered_map<int, int> &group_mask) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
const int root1 = findRoot(p1, group_mask);
|
|
const int root2 = findRoot(p2, group_mask);
|
|
if (root1 != root2) {
|
|
group_mask[root1] = root2;
|
|
}
|
|
}
|
|
|
|
static cv::Mat decodeImageByJoin(const std::vector<float> &cls_data,
|
|
const std::vector<int> &cls_data_shape,
|
|
const std::vector<float> &link_data,
|
|
const std::vector<int> &link_data_shape,
|
|
float cls_conf_threshold,
|
|
float link_conf_threshold) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
const int h = cls_data_shape[1];
|
|
const int w = cls_data_shape[2];
|
|
|
|
std::vector<uchar> pixel_mask(h * w, 0);
|
|
std::unordered_map<int, int> group_mask;
|
|
std::vector<cv::Point> points;
|
|
for (int i = 0; i < static_cast<int>(pixel_mask.size()); i++) {
|
|
pixel_mask[i] = cls_data[i] >= cls_conf_threshold;
|
|
if (pixel_mask[i]) {
|
|
points.emplace_back(i % w, i / w);
|
|
group_mask[i] = -1;
|
|
}
|
|
}
|
|
std::vector<uchar> link_mask(link_data.size(), 0);
|
|
for (size_t i = 0; i < link_mask.size(); i++) {
|
|
link_mask[i] = link_data[i] >= link_conf_threshold;
|
|
}
|
|
size_t neighbours = size_t(link_data_shape[3]);
|
|
for (const auto &point : points) {
|
|
size_t neighbour = 0;
|
|
for (int ny = point.y - 1; ny <= point.y + 1; ny++) {
|
|
for (int nx = point.x - 1; nx <= point.x + 1; nx++) {
|
|
if (nx == point.x && ny == point.y)
|
|
continue;
|
|
if (nx >= 0 && nx < w && ny >= 0 && ny < h) {
|
|
uchar pixel_value = pixel_mask[size_t(ny) * size_t(w) + size_t(nx)];
|
|
uchar link_value = link_mask[(size_t(point.y) * size_t(w) + size_t(point.x))
|
|
*neighbours + neighbour];
|
|
if (pixel_value && link_value) {
|
|
join(point.x + point.y * w, nx + ny * w, group_mask);
|
|
}
|
|
}
|
|
neighbour++;
|
|
}
|
|
}
|
|
}
|
|
return get_all(points, w, h, group_mask);
|
|
}
|
|
|
|
static cv::Mat get_all(const std::vector<cv::Point> &points,
|
|
const int w,
|
|
const int h,
|
|
std::unordered_map<int, int> &group_mask) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
std::unordered_map<int, int> root_map;
|
|
cv::Mat mask(h, w, CV_32S, cv::Scalar(0));
|
|
for (const auto &point : points) {
|
|
int point_root = findRoot(point.x + point.y * w, group_mask);
|
|
if (root_map.find(point_root) == root_map.end()) {
|
|
root_map.emplace(point_root, static_cast<int>(root_map.size() + 1));
|
|
}
|
|
mask.at<int>(point.x + point.y * w) = root_map[point_root];
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
static int findRoot(const int point,
|
|
std::unordered_map<int, int> &group_mask) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
int root = point;
|
|
bool update_parent = false;
|
|
while (group_mask.at(root) != -1) {
|
|
root = group_mask.at(root);
|
|
update_parent = true;
|
|
}
|
|
if (update_parent) {
|
|
group_mask[point] = root;
|
|
}
|
|
return root;
|
|
}
|
|
|
|
static std::vector<cv::RotatedRect> maskToBoxes(const cv::Mat &mask,
|
|
const float min_area,
|
|
const float min_height,
|
|
const cv::Size &image_size) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
std::vector<cv::RotatedRect> bboxes;
|
|
double min_val = 0.;
|
|
double max_val = 0.;
|
|
cv::minMaxLoc(mask, &min_val, &max_val);
|
|
int max_bbox_idx = static_cast<int>(max_val);
|
|
cv::Mat resized_mask;
|
|
cv::resize(mask, resized_mask, image_size, 0, 0, cv::INTER_NEAREST);
|
|
|
|
for (int i = 1; i <= max_bbox_idx; i++) {
|
|
cv::Mat bbox_mask = resized_mask == i;
|
|
std::vector<std::vector<cv::Point>> contours;
|
|
|
|
cv::findContours(bbox_mask, contours, cv::RETR_CCOMP, cv::CHAIN_APPROX_SIMPLE);
|
|
if (contours.empty())
|
|
continue;
|
|
cv::RotatedRect r = cv::minAreaRect(contours[0]);
|
|
if (std::min(r.size.width, r.size.height) < min_height)
|
|
continue;
|
|
if (r.size.area() < min_area)
|
|
continue;
|
|
bboxes.emplace_back(r);
|
|
}
|
|
return bboxes;
|
|
}
|
|
}; // GAPI_OCV_KERNEL(PostProcess)
|
|
|
|
GAPI_OCV_KERNEL(OCVCropLabels, CropLabels) {
|
|
static void run(const cv::Mat &image,
|
|
const std::vector<cv::RotatedRect> &detections,
|
|
const cv::Size &outSize,
|
|
std::vector<cv::Mat> &out) {
|
|
out.clear();
|
|
out.reserve(detections.size());
|
|
cv::Mat crop(outSize, CV_8UC3, cv::Scalar(0));
|
|
cv::Mat gray(outSize, CV_8UC1, cv::Scalar(0));
|
|
std::vector<int> blob_shape = {1,1,outSize.height,outSize.width};
|
|
|
|
for (auto &&rr : detections) {
|
|
std::vector<cv::Point2f> points(4);
|
|
rr.points(points.data());
|
|
|
|
const auto top_left_point_idx = topLeftPointIdx(points);
|
|
cv::Point2f point0 = points[static_cast<size_t>(top_left_point_idx)];
|
|
cv::Point2f point1 = points[(top_left_point_idx + 1) % 4];
|
|
cv::Point2f point2 = points[(top_left_point_idx + 2) % 4];
|
|
|
|
std::vector<cv::Point2f> from{point0, point1, point2};
|
|
std::vector<cv::Point2f> to{
|
|
cv::Point2f(0.0f, 0.0f),
|
|
cv::Point2f(static_cast<float>(outSize.width-1), 0.0f),
|
|
cv::Point2f(static_cast<float>(outSize.width-1),
|
|
static_cast<float>(outSize.height-1))
|
|
};
|
|
cv::Mat M = cv::getAffineTransform(from, to);
|
|
cv::warpAffine(image, crop, M, outSize);
|
|
cv::cvtColor(crop, gray, cv::COLOR_BGR2GRAY);
|
|
|
|
cv::Mat blob;
|
|
gray.convertTo(blob, CV_32F);
|
|
out.push_back(blob.reshape(1, blob_shape)); // pass as 1,1,H,W instead of H,W
|
|
}
|
|
}
|
|
|
|
static int topLeftPointIdx(const std::vector<cv::Point2f> &points) {
|
|
// NOTE: Taken from the OMZ text detection sample almost as-is
|
|
cv::Point2f most_left(std::numeric_limits<float>::max(),
|
|
std::numeric_limits<float>::max());
|
|
cv::Point2f almost_most_left(std::numeric_limits<float>::max(),
|
|
std::numeric_limits<float>::max());
|
|
int most_left_idx = -1;
|
|
int almost_most_left_idx = -1;
|
|
|
|
for (size_t i = 0; i < points.size() ; i++) {
|
|
if (most_left.x > points[i].x) {
|
|
if (most_left.x < std::numeric_limits<float>::max()) {
|
|
almost_most_left = most_left;
|
|
almost_most_left_idx = most_left_idx;
|
|
}
|
|
most_left = points[i];
|
|
most_left_idx = static_cast<int>(i);
|
|
}
|
|
if (almost_most_left.x > points[i].x && points[i] != most_left) {
|
|
almost_most_left = points[i];
|
|
almost_most_left_idx = static_cast<int>(i);
|
|
}
|
|
}
|
|
|
|
if (almost_most_left.y < most_left.y) {
|
|
most_left = almost_most_left;
|
|
most_left_idx = almost_most_left_idx;
|
|
}
|
|
return most_left_idx;
|
|
}
|
|
|
|
}; // GAPI_OCV_KERNEL(CropLabels)
|
|
|
|
} // anonymous namespace
|
|
} // namespace custom
|
|
|
|
namespace vis {
|
|
namespace {
|
|
|
|
void drawRotatedRect(cv::Mat &m, const cv::RotatedRect &rc) {
|
|
std::vector<cv::Point2f> tmp_points(5);
|
|
rc.points(tmp_points.data());
|
|
tmp_points[4] = tmp_points[0];
|
|
auto prev = tmp_points.begin(), it = prev+1;
|
|
for (; it != tmp_points.end(); ++it) {
|
|
cv::line(m, *prev, *it, cv::Scalar(50, 205, 50), 2);
|
|
prev = it;
|
|
}
|
|
}
|
|
|
|
void drawText(cv::Mat &m, const cv::RotatedRect &rc, const std::string &str) {
|
|
const int fface = cv::FONT_HERSHEY_SIMPLEX;
|
|
const double scale = 0.7;
|
|
const int thick = 1;
|
|
int base = 0;
|
|
const auto text_size = cv::getTextSize(str, fface, scale, thick, &base);
|
|
|
|
std::vector<cv::Point2f> tmp_points(4);
|
|
rc.points(tmp_points.data());
|
|
const auto tl_point_idx = custom::OCVCropLabels::topLeftPointIdx(tmp_points);
|
|
cv::Point text_pos = tmp_points[tl_point_idx];
|
|
text_pos.x = std::max(0, text_pos.x);
|
|
text_pos.y = std::max(text_size.height, text_pos.y);
|
|
|
|
cv::rectangle(m,
|
|
text_pos + cv::Point{0, base},
|
|
text_pos + cv::Point{text_size.width, -text_size.height},
|
|
CV_RGB(50, 205, 50),
|
|
cv::FILLED);
|
|
const auto white = CV_RGB(255, 255, 255);
|
|
cv::putText(m, str, text_pos, fface, scale, white, thick, 8);
|
|
}
|
|
|
|
} // anonymous namespace
|
|
} // namespace vis
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
cv::CommandLineParser cmd(argc, argv, keys);
|
|
cmd.about(about);
|
|
if (cmd.has("help")) {
|
|
cmd.printMessage();
|
|
return 0;
|
|
}
|
|
const auto input_file_name = cmd.get<std::string>("input");
|
|
const auto tdet_model_path = cmd.get<std::string>("tdm");
|
|
const auto trec_model_path = cmd.get<std::string>("trm");
|
|
const auto tdet_target_dev = cmd.get<std::string>("tdd");
|
|
const auto trec_target_dev = cmd.get<std::string>("trd");
|
|
const auto ctc_beam_dec_bw = cmd.get<int>("bw");
|
|
const auto dec_conf_thresh = cmd.get<double>("thr");
|
|
|
|
const auto pad_symbol = '#';
|
|
const auto symbol_set = cmd.get<std::string>("sset") + pad_symbol;
|
|
|
|
cv::GMat in;
|
|
cv::GOpaque<cv::Size> in_rec_sz;
|
|
cv::GMat link, segm;
|
|
std::tie(link, segm) = cv::gapi::infer<custom::TextDetection>(in);
|
|
cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(in);
|
|
cv::GArray<cv::RotatedRect> rrs = custom::PostProcess::on(link, segm, size, 0.8f, 0.8f);
|
|
cv::GArray<cv::GMat> labels = custom::CropLabels::on(in, rrs, in_rec_sz);
|
|
cv::GArray<cv::GMat> text = cv::gapi::infer2<custom::TextRecognition>(in, labels);
|
|
|
|
cv::GComputation graph(cv::GIn(in, in_rec_sz),
|
|
cv::GOut(cv::gapi::copy(in), rrs, text));
|
|
|
|
// Text detection network
|
|
auto tdet_net = cv::gapi::ie::Params<custom::TextDetection> {
|
|
tdet_model_path, // path to topology IR
|
|
weights_path(tdet_model_path), // path to weights
|
|
tdet_target_dev, // device specifier
|
|
}.cfgOutputLayers({"model/link_logits_/add", "model/segm_logits/add"});
|
|
|
|
auto trec_net = cv::gapi::ie::Params<custom::TextRecognition> {
|
|
trec_model_path, // path to topology IR
|
|
weights_path(trec_model_path), // path to weights
|
|
trec_target_dev, // device specifier
|
|
};
|
|
auto networks = cv::gapi::networks(tdet_net, trec_net);
|
|
|
|
auto kernels = cv::gapi::kernels< custom::OCVPostProcess
|
|
, custom::OCVCropLabels
|
|
>();
|
|
auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks));
|
|
|
|
std::cout << "Reading " << input_file_name << std::endl;
|
|
|
|
// Input stream
|
|
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);
|
|
|
|
// Text recognition input size (also an input parameter to the graph)
|
|
auto in_rsz = cv::Size{ 120, 32 };
|
|
|
|
// Set the pipeline source & start the pipeline
|
|
pipeline.setSource(cv::gin(in_src, in_rsz));
|
|
pipeline.start();
|
|
|
|
// Declare the output data & run the processing loop
|
|
cv::TickMeter tm;
|
|
cv::Mat image;
|
|
std::vector<cv::RotatedRect> out_rcs;
|
|
std::vector<cv::Mat> out_text;
|
|
|
|
tm.start();
|
|
int frames = 0;
|
|
while (pipeline.pull(cv::gout(image, out_rcs, out_text))) {
|
|
frames++;
|
|
|
|
CV_Assert(out_rcs.size() == out_text.size());
|
|
const auto num_labels = out_rcs.size();
|
|
|
|
std::vector<cv::Point2f> tmp_points(4);
|
|
for (std::size_t l = 0; l < num_labels; l++) {
|
|
// Decode the recognized text in the rectangle
|
|
const auto &blob = out_text[l];
|
|
const float *data = blob.ptr<float>();
|
|
const auto sz = blob.total();
|
|
double conf = 1.0;
|
|
const std::string res = ctc_beam_dec_bw == 0
|
|
? CTCGreedyDecoder(data, sz, symbol_set, pad_symbol, &conf)
|
|
: CTCBeamSearchDecoder(data, sz, symbol_set, &conf, ctc_beam_dec_bw);
|
|
|
|
// Draw a bounding box for this rotated rectangle
|
|
const auto &rc = out_rcs[l];
|
|
vis::drawRotatedRect(image, rc);
|
|
|
|
// Draw text, if decoded
|
|
if (conf >= dec_conf_thresh) {
|
|
vis::drawText(image, rc, res);
|
|
}
|
|
}
|
|
tm.stop();
|
|
cv::imshow("Out", image);
|
|
cv::waitKey(1);
|
|
tm.start();
|
|
}
|
|
tm.stop();
|
|
std::cout << "Processed " << frames << " frames"
|
|
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
|
|
return 0;
|
|
}
|