opencv/modules/gpu/test/test_warp_affine.cpp
Vladislav Vinogradov ade7394e77 refactored and fixed bugs in gpu warp functions (remap, resize, warpAffine, warpPerspective)
wrote more complicated tests for them
implemented own version of warpAffine and warpPerspective for different border interpolation types
refactored some gpu tests
2012-03-14 15:54:17 +00:00

276 lines
9.9 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
namespace
{
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
{
cv::Mat M(2, 3, CV_64FC1);
M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) = std::cos(angle); M.at<double>(1, 2) = 0.0;
return M;
}
}
///////////////////////////////////////////////////////////////////
// Test buildWarpAffineMaps
PARAM_TEST_CASE(BuildWarpAffineMaps, cv::gpu::DeviceInfo, cv::Size, Inverse)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
bool inverse;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
inverse = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(BuildWarpAffineMaps, Accuracy)
{
cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
cv::gpu::GpuMat xmap, ymap;
cv::gpu::buildWarpAffineMaps(M, inverse, size, xmap, ymap);
int interpolation = cv::INTER_NEAREST;
int borderMode = cv::BORDER_CONSTANT;
cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
cv::Mat dst;
cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
int flags = interpolation;
if (inverse)
flags |= cv::WARP_INVERSE_MAP;
cv::Mat dst_gold;
cv::warpAffine(src, dst_gold, M, size, flags, borderMode);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, BuildWarpAffineMaps, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DIRECT_INVERSE));
///////////////////////////////////////////////////////////////////
// Gold implementation
namespace
{
template <typename T, template <typename> class Interpolator> void warpAffineImpl(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal)
{
const int cn = src.channels();
dst.create(dsize, src.type());
for (int y = 0; y < dsize.height; ++y)
{
for (int x = 0; x < dsize.width; ++x)
{
float xcoo = static_cast<float>(M.at<double>(0, 0) * x + M.at<double>(0, 1) * y + M.at<double>(0, 2));
float ycoo = static_cast<float>(M.at<double>(1, 0) * x + M.at<double>(1, 1) * y + M.at<double>(1, 2));
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, ycoo, xcoo, c, borderType, borderVal);
}
}
}
void warpAffineGold(const cv::Mat& src, const cv::Mat& M, bool inverse, cv::Size dsize, cv::Mat& dst, int interpolation, int borderType, cv::Scalar borderVal)
{
typedef void (*func_t)(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal);
static const func_t nearest_funcs[] =
{
warpAffineImpl<unsigned char, NearestInterpolator>,
warpAffineImpl<signed char, NearestInterpolator>,
warpAffineImpl<unsigned short, NearestInterpolator>,
warpAffineImpl<short, NearestInterpolator>,
warpAffineImpl<int, NearestInterpolator>,
warpAffineImpl<float, NearestInterpolator>
};
static const func_t linear_funcs[] =
{
warpAffineImpl<unsigned char, LinearInterpolator>,
warpAffineImpl<signed char, LinearInterpolator>,
warpAffineImpl<unsigned short, LinearInterpolator>,
warpAffineImpl<short, LinearInterpolator>,
warpAffineImpl<int, LinearInterpolator>,
warpAffineImpl<float, LinearInterpolator>
};
static const func_t cubic_funcs[] =
{
warpAffineImpl<unsigned char, CubicInterpolator>,
warpAffineImpl<signed char, CubicInterpolator>,
warpAffineImpl<unsigned short, CubicInterpolator>,
warpAffineImpl<short, CubicInterpolator>,
warpAffineImpl<int, CubicInterpolator>,
warpAffineImpl<float, CubicInterpolator>
};
static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
if (inverse)
funcs[interpolation][src.depth()](src, M, dsize, dst, borderType, borderVal);
else
{
cv::Mat iM;
cv::invertAffineTransform(M, iM);
funcs[interpolation][src.depth()](src, iM, dsize, dst, borderType, borderVal);
}
}
}
///////////////////////////////////////////////////////////////////
// Test
PARAM_TEST_CASE(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, Border, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
bool inverse;
int interpolation;
int borderType;
bool useRoi;
cv::Mat M;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
inverse = GET_PARAM(3);
interpolation = GET_PARAM(4);
borderType = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(WarpAffine, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
int flags = interpolation;
if (inverse)
flags |= cv::WARP_INVERSE_MAP;
cv::Scalar val = randomScalar(0.0, 255.0);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::warpAffine(loadMat(src, useRoi), dst, M, size, flags, borderType, val);
cv::Mat dst_gold;
warpAffineGold(src, M, inverse, size, dst_gold, interpolation, borderType, val);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-1 : 1.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffine, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
DIRECT_INVERSE,
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(Border(cv::BORDER_REFLECT101), Border(cv::BORDER_REPLICATE), Border(cv::BORDER_REFLECT), Border(cv::BORDER_WRAP)),
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////
// Test NPP
PARAM_TEST_CASE(WarpAffineNPP, cv::gpu::DeviceInfo, MatType, Inverse, Interpolation)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool inverse;
int interpolation;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
inverse = GET_PARAM(2);
interpolation = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(WarpAffineNPP, Accuracy)
{
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
int flags = interpolation;
if (inverse)
flags |= cv::WARP_INVERSE_MAP;
cv::gpu::GpuMat dst;
cv::gpu::warpAffine(loadMat(src), dst, M, src.size(), flags);
cv::Mat dst_gold;
warpAffineGold(src, M, inverse, src.size(), dst_gold, interpolation, cv::BORDER_CONSTANT, cv::Scalar::all(0));
EXPECT_MAT_SIMILAR(dst_gold, dst, 2e-2);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffineNPP, testing::Combine(
ALL_DEVICES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
DIRECT_INVERSE,
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC))));
#endif // HAVE_CUDA