mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 00:10:21 +08:00
d86d8ed909
PR #2968:cce2d99
8578f9c
Fixed bug which caused crash of GPU version of feature matcher in stitcher The bug caused crash of GPU version of feature matcher in stitcher when we use ORB features. PR #3236:5947519
Check sure that we're not already below required leaf false alarm rate before continuing to get negative samples. PR #3190 fix blobdetector PR #3562 (part):82bd82e
TBB updated to 4.3u2. Fix for aarch64 support. PR #3604 (part):091c7a3
OpenGL interop sample reworked not ot use cvconfig.h PR #3792:afdf319
Add -L for CUDA libs path to pkg-config Add all dirs from CUDA_LIBS_PATH as -L linker options to OPENCV_LINKER_LIBS. These will end up in opencv.pc. PR #3893:122b9f8
Turn ocv_convert_to_lib_name into a function PR #5490:ec5244a
fixed memory leak in findHomography tests PR #5491:0d5b739
delete video readers PR #5574 PR #5202
712 lines
33 KiB
C++
712 lines
33 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <time.h>
|
|
|
|
#define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE 1
|
|
#define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF 2
|
|
#define CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF 3
|
|
#define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK 4
|
|
#define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF 5
|
|
|
|
#define MESSAGE_MATRIX_SIZE "Homography matrix must have 3*3 sizes."
|
|
#define MESSAGE_MATRIX_DIFF "Accuracy of homography transformation matrix less than required."
|
|
#define MESSAGE_REPROJ_DIFF_1 "Reprojection error for current pair of points more than required."
|
|
#define MESSAGE_REPROJ_DIFF_2 "Reprojection error is not optimal."
|
|
#define MESSAGE_RANSAC_MASK_1 "Sizes of inliers/outliers mask are incorrect."
|
|
#define MESSAGE_RANSAC_MASK_2 "Mask mustn't have any outliers."
|
|
#define MESSAGE_RANSAC_MASK_3 "All values of mask must be 1 (true) or 0 (false)."
|
|
#define MESSAGE_RANSAC_MASK_4 "Mask of inliers/outliers is incorrect."
|
|
#define MESSAGE_RANSAC_MASK_5 "Inlier in original mask shouldn't be outlier in found mask."
|
|
#define MESSAGE_RANSAC_DIFF "Reprojection error for current pair of points more than required."
|
|
|
|
#define MAX_COUNT_OF_POINTS 303
|
|
#define COUNT_NORM_TYPES 3
|
|
#define METHODS_COUNT 4
|
|
|
|
int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
|
|
int METHOD[METHODS_COUNT] = {0, cv::RANSAC, cv::LMEDS, cv::RHO};
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
class CV_HomographyTest: public cvtest::ArrayTest
|
|
{
|
|
public:
|
|
CV_HomographyTest();
|
|
~CV_HomographyTest();
|
|
|
|
void run (int);
|
|
|
|
protected:
|
|
|
|
int method;
|
|
int image_size;
|
|
double reproj_threshold;
|
|
double sigma;
|
|
|
|
private:
|
|
float max_diff, max_2diff;
|
|
bool check_matrix_size(const cv::Mat& H);
|
|
bool check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff);
|
|
int check_ransac_mask_1(const Mat& src, const Mat& mask);
|
|
int check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask);
|
|
|
|
void print_information_1(int j, int N, int method, const Mat& H);
|
|
void print_information_2(int j, int N, int method, const Mat& H, const Mat& H_res, int k, double diff);
|
|
void print_information_3(int method, int j, int N, const Mat& mask);
|
|
void print_information_4(int method, int j, int N, int k, int l, double diff);
|
|
void print_information_5(int method, int j, int N, int l, double diff);
|
|
void print_information_6(int method, int j, int N, int k, double diff, bool value);
|
|
void print_information_7(int method, int j, int N, int k, double diff, bool original_value, bool found_value);
|
|
void print_information_8(int method, int j, int N, int k, int l, double diff);
|
|
};
|
|
|
|
CV_HomographyTest::CV_HomographyTest() : max_diff(1e-2f), max_2diff(2e-2f)
|
|
{
|
|
method = 0;
|
|
image_size = 100;
|
|
reproj_threshold = 3.0;
|
|
sigma = 0.01;
|
|
}
|
|
|
|
CV_HomographyTest::~CV_HomographyTest() {}
|
|
|
|
bool CV_HomographyTest::check_matrix_size(const cv::Mat& H)
|
|
{
|
|
return (H.rows == 3) && (H.cols == 3);
|
|
}
|
|
|
|
bool CV_HomographyTest::check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff)
|
|
{
|
|
diff = cvtest::norm(original, found, norm_type);
|
|
return diff <= max_diff;
|
|
}
|
|
|
|
int CV_HomographyTest::check_ransac_mask_1(const Mat& src, const Mat& mask)
|
|
{
|
|
if (!(mask.cols == 1) && (mask.rows == src.cols)) return 1;
|
|
if (countNonZero(mask) < mask.rows) return 2;
|
|
for (int i = 0; i < mask.rows; ++i) if (mask.at<uchar>(i, 0) > 1) return 3;
|
|
return 0;
|
|
}
|
|
|
|
int CV_HomographyTest::check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask)
|
|
{
|
|
if (!(found_mask.cols == 1) && (found_mask.rows == original_mask.rows)) return 1;
|
|
for (int i = 0; i < found_mask.rows; ++i) if (found_mask.at<uchar>(i, 0) > 1) return 2;
|
|
return 0;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_1(int j, int N, int _method, const Mat& H)
|
|
{
|
|
cout << endl; cout << "Checking for homography matrix sizes..." << endl; cout << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Count of points: " << N << endl; cout << endl;
|
|
cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl;
|
|
cout << "Homography matrix:" << endl; cout << endl;
|
|
cout << H << endl; cout << endl;
|
|
cout << "Number of rows: " << H.rows << " Number of cols: " << H.cols << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_2(int j, int N, int _method, const Mat& H, const Mat& H_res, int k, double diff)
|
|
{
|
|
cout << endl; cout << "Checking for accuracy of homography matrix computing..." << endl; cout << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Count of points: " << N << endl; cout << endl;
|
|
cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl;
|
|
cout << "Original matrix:" << endl; cout << endl;
|
|
cout << H << endl; cout << endl;
|
|
cout << "Found matrix:" << endl; cout << endl;
|
|
cout << H_res << endl; cout << endl;
|
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[k] == 1) cout << "INF"; else if (NORM_TYPE[k] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
|
cout << "Difference between matrices: " << diff << endl;
|
|
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_3(int _method, int j, int N, const Mat& mask)
|
|
{
|
|
cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Count of points: " << N << endl; cout << endl;
|
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
|
|
cout << "Found mask:" << endl; cout << endl;
|
|
cout << mask << endl; cout << endl;
|
|
cout << "Number of rows: " << mask.rows << " Number of cols: " << mask.cols << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_4(int _method, int j, int N, int k, int l, double diff)
|
|
{
|
|
cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl;
|
|
cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Sigma of normal noise: " << sigma << endl;
|
|
cout << "Count of points: " << N << endl;
|
|
cout << "Number of point: " << k << endl;
|
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
|
cout << "Difference with noise of point: " << diff << endl;
|
|
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, double diff)
|
|
{
|
|
cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl;
|
|
cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Sigma of normal noise: " << sigma << endl;
|
|
cout << "Count of points: " << N << endl;
|
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
|
cout << "Difference with noise of points: " << diff << endl;
|
|
cout << "Maxumum allowed difference: " << max_diff << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_6(int _method, int j, int N, int k, double diff, bool value)
|
|
{
|
|
cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
|
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Count of points: " << N << " " << endl;
|
|
cout << "Number of point: " << k << " " << endl;
|
|
cout << "Reprojection error for this point: " << diff << " " << endl;
|
|
cout << "Reprojection error threshold: " << reproj_threshold << " " << endl;
|
|
cout << "Value of found mask: "<< value << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_7(int _method, int j, int N, int k, double diff, bool original_value, bool found_value)
|
|
{
|
|
cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
|
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Count of points: " << N << " " << endl;
|
|
cout << "Number of point: " << k << " " << endl;
|
|
cout << "Reprojection error for this point: " << diff << " " << endl;
|
|
cout << "Reprojection error threshold: " << reproj_threshold << " " << endl;
|
|
cout << "Value of original mask: "<< original_value << " Value of found mask: " << found_value << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::print_information_8(int _method, int j, int N, int k, int l, double diff)
|
|
{
|
|
cout << endl; cout << "Checking for reprojection error of inlier..." << endl; cout << endl;
|
|
cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
|
|
cout << "Sigma of normal noise: " << sigma << endl;
|
|
cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>";
|
|
cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
|
|
cout << "Count of points: " << N << " " << endl;
|
|
cout << "Number of point: " << k << " " << endl;
|
|
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
|
cout << "Difference with noise of point: " << diff << endl;
|
|
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
|
|
}
|
|
|
|
void CV_HomographyTest::run(int)
|
|
{
|
|
for (int N = 4; N <= MAX_COUNT_OF_POINTS; ++N)
|
|
{
|
|
RNG& rng = ts->get_rng();
|
|
|
|
float *src_data = new float [2*N];
|
|
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
src_data[2*i] = (float)cvtest::randReal(rng)*image_size;
|
|
src_data[2*i+1] = (float)cvtest::randReal(rng)*image_size;
|
|
}
|
|
|
|
cv::Mat src_mat_2f(1, N, CV_32FC2, src_data),
|
|
src_mat_2d(2, N, CV_32F, src_data),
|
|
src_mat_3d(3, N, CV_32F);
|
|
cv::Mat dst_mat_2f, dst_mat_2d, dst_mat_3d;
|
|
|
|
vector <Point2f> src_vec, dst_vec;
|
|
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
float *tmp = src_mat_2d.ptr<float>()+2*i;
|
|
src_mat_3d.at<float>(0, i) = tmp[0];
|
|
src_mat_3d.at<float>(1, i) = tmp[1];
|
|
src_mat_3d.at<float>(2, i) = 1.0f;
|
|
|
|
src_vec.push_back(Point2f(tmp[0], tmp[1]));
|
|
}
|
|
|
|
double fi = cvtest::randReal(rng)*2*CV_PI;
|
|
|
|
double t_x = cvtest::randReal(rng)*sqrt(image_size*1.0),
|
|
t_y = cvtest::randReal(rng)*sqrt(image_size*1.0);
|
|
|
|
double Hdata[9] = { cos(fi), -sin(fi), t_x,
|
|
sin(fi), cos(fi), t_y,
|
|
0.0f, 0.0f, 1.0f };
|
|
|
|
cv::Mat H_64(3, 3, CV_64F, Hdata), H_32;
|
|
|
|
H_64.convertTo(H_32, CV_32F);
|
|
|
|
dst_mat_3d = H_32*src_mat_3d;
|
|
|
|
dst_mat_2d.create(2, N, CV_32F); dst_mat_2f.create(1, N, CV_32FC2);
|
|
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
float *tmp_2f = dst_mat_2f.ptr<float>()+2*i;
|
|
tmp_2f[0] = dst_mat_2d.at<float>(0, i) = dst_mat_3d.at<float>(0, i) /= dst_mat_3d.at<float>(2, i);
|
|
tmp_2f[1] = dst_mat_2d.at<float>(1, i) = dst_mat_3d.at<float>(1, i) /= dst_mat_3d.at<float>(2, i);
|
|
dst_mat_3d.at<float>(2, i) = 1.0f;
|
|
|
|
dst_vec.push_back(Point2f(tmp_2f[0], tmp_2f[1]));
|
|
}
|
|
|
|
for (int i = 0; i < METHODS_COUNT; ++i)
|
|
{
|
|
method = METHOD[i];
|
|
switch (method)
|
|
{
|
|
case 0:
|
|
case LMEDS:
|
|
{
|
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method),
|
|
cv::findHomography(src_mat_2f, dst_vec, method),
|
|
cv::findHomography(src_vec, dst_mat_2f, method),
|
|
cv::findHomography(src_vec, dst_vec, method) };
|
|
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
|
|
if (!check_matrix_size(H_res_64[j]))
|
|
{
|
|
print_information_1(j, N, method, H_res_64[j]);
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
|
|
return;
|
|
}
|
|
|
|
double diff;
|
|
|
|
for (int k = 0; k < COUNT_NORM_TYPES; ++k)
|
|
if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff))
|
|
{
|
|
print_information_2(j, N, method, H_64, H_res_64[j], k, diff);
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF);
|
|
return;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
case cv::RHO:
|
|
case RANSAC:
|
|
{
|
|
cv::Mat mask [4]; double diff;
|
|
|
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask[0]),
|
|
cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask[1]),
|
|
cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask[2]),
|
|
cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask[3]) };
|
|
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
|
|
if (!check_matrix_size(H_res_64[j]))
|
|
{
|
|
print_information_1(j, N, method, H_res_64[j]);
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
|
|
return;
|
|
}
|
|
|
|
for (int k = 0; k < COUNT_NORM_TYPES; ++k)
|
|
if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff))
|
|
{
|
|
print_information_2(j, N, method, H_64, H_res_64[j], k, diff);
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF);
|
|
return;
|
|
}
|
|
|
|
int code = check_ransac_mask_1(src_mat_2f, mask[j]);
|
|
|
|
if (code)
|
|
{
|
|
print_information_3(method, j, N, mask[j]);
|
|
|
|
switch (code)
|
|
{
|
|
case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; }
|
|
case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_2); break; }
|
|
case 3: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; }
|
|
|
|
default: break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
default: continue;
|
|
}
|
|
}
|
|
|
|
Mat noise_2f(1, N, CV_32FC2);
|
|
rng.fill(noise_2f, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma));
|
|
|
|
cv::Mat mask(N, 1, CV_8UC1);
|
|
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
float *a = noise_2f.ptr<float>()+2*i, *_2f = dst_mat_2f.ptr<float>()+2*i;
|
|
_2f[0] += a[0]; _2f[1] += a[1];
|
|
mask.at<bool>(i, 0) = !(sqrt(a[0]*a[0]+a[1]*a[1]) > reproj_threshold);
|
|
}
|
|
|
|
for (int i = 0; i < METHODS_COUNT; ++i)
|
|
{
|
|
method = METHOD[i];
|
|
switch (method)
|
|
{
|
|
case 0:
|
|
case LMEDS:
|
|
{
|
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f),
|
|
cv::findHomography(src_mat_2f, dst_vec),
|
|
cv::findHomography(src_vec, dst_mat_2f),
|
|
cv::findHomography(src_vec, dst_vec) };
|
|
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
|
|
if (!check_matrix_size(H_res_64[j]))
|
|
{
|
|
print_information_1(j, N, method, H_res_64[j]);
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
|
|
return;
|
|
}
|
|
|
|
Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F);
|
|
|
|
cv::Mat dst_res_3d(3, N, CV_32F), noise_2d(2, N, CV_32F);
|
|
|
|
for (int k = 0; k < N; ++k)
|
|
{
|
|
|
|
Mat tmp_mat_3d = H_res_32*src_mat_3d.col(k);
|
|
|
|
dst_res_3d.at<float>(0, k) = tmp_mat_3d.at<float>(0, 0) /= tmp_mat_3d.at<float>(2, 0);
|
|
dst_res_3d.at<float>(1, k) = tmp_mat_3d.at<float>(1, 0) /= tmp_mat_3d.at<float>(2, 0);
|
|
dst_res_3d.at<float>(2, k) = tmp_mat_3d.at<float>(2, 0) = 1.0f;
|
|
|
|
float *a = noise_2f.ptr<float>()+2*k;
|
|
noise_2d.at<float>(0, k) = a[0]; noise_2d.at<float>(1, k) = a[1];
|
|
|
|
for (int l = 0; l < COUNT_NORM_TYPES; ++l)
|
|
if (cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]) > max_2diff)
|
|
{
|
|
print_information_4(method, j, N, k, l, cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]));
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_1);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
for (int l = 0; l < COUNT_NORM_TYPES; ++l)
|
|
if (cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]) > max_diff)
|
|
{
|
|
print_information_5(method, j, N, l, cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]));
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_2);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
continue;
|
|
}
|
|
case cv::RHO:
|
|
case RANSAC:
|
|
{
|
|
cv::Mat mask_res [4];
|
|
|
|
Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask_res[0]),
|
|
cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask_res[1]),
|
|
cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask_res[2]),
|
|
cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask_res[3]) };
|
|
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
if (!check_matrix_size(H_res_64[j]))
|
|
{
|
|
print_information_1(j, N, method, H_res_64[j]);
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
|
|
return;
|
|
}
|
|
|
|
int code = check_ransac_mask_2(mask, mask_res[j]);
|
|
|
|
if (code)
|
|
{
|
|
print_information_3(method, j, N, mask_res[j]);
|
|
|
|
switch (code)
|
|
{
|
|
case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; }
|
|
case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; }
|
|
|
|
default: break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
cv::Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F);
|
|
|
|
cv::Mat dst_res_3d = H_res_32*src_mat_3d;
|
|
|
|
for (int k = 0; k < N; ++k)
|
|
{
|
|
dst_res_3d.at<float>(0, k) /= dst_res_3d.at<float>(2, k);
|
|
dst_res_3d.at<float>(1, k) /= dst_res_3d.at<float>(2, k);
|
|
dst_res_3d.at<float>(2, k) = 1.0f;
|
|
|
|
float *p = dst_mat_2f.ptr<float>()+2*k;
|
|
|
|
dst_mat_3d.at<float>(0, k) = p[0];
|
|
dst_mat_3d.at<float>(1, k) = p[1];
|
|
|
|
double diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_L2);
|
|
|
|
if (mask_res[j].at<bool>(k, 0) != (diff <= reproj_threshold))
|
|
{
|
|
print_information_6(method, j, N, k, diff, mask_res[j].at<bool>(k, 0));
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_4);
|
|
return;
|
|
}
|
|
|
|
if (mask.at<bool>(k, 0) && !mask_res[j].at<bool>(k, 0))
|
|
{
|
|
print_information_7(method, j, N, k, diff, mask.at<bool>(k, 0), mask_res[j].at<bool>(k, 0));
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_5);
|
|
return;
|
|
}
|
|
|
|
if (mask_res[j].at<bool>(k, 0))
|
|
{
|
|
float *a = noise_2f.ptr<float>()+2*k;
|
|
dst_mat_3d.at<float>(0, k) -= a[0];
|
|
dst_mat_3d.at<float>(1, k) -= a[1];
|
|
|
|
cv::Mat noise_2d(2, 1, CV_32F);
|
|
noise_2d.at<float>(0, 0) = a[0]; noise_2d.at<float>(1, 0) = a[1];
|
|
|
|
for (int l = 0; l < COUNT_NORM_TYPES; ++l)
|
|
{
|
|
diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_TYPE[l]);
|
|
|
|
if (diff - cv::norm(noise_2d, NORM_TYPE[l]) > max_2diff)
|
|
{
|
|
print_information_8(method, j, N, k, l, diff - cv::norm(noise_2d, NORM_TYPE[l]));
|
|
CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF, MESSAGE_RANSAC_DIFF);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
default: continue;
|
|
}
|
|
}
|
|
|
|
delete[]src_data;
|
|
src_data = NULL;
|
|
}
|
|
}
|
|
|
|
TEST(Calib3d_Homography, accuracy) { CV_HomographyTest test; test.safe_run(); }
|
|
|
|
TEST(Calib3d_Homography, EKcase)
|
|
{
|
|
float pt1data[] =
|
|
{
|
|
2.80073029e+002f, 2.39591217e+002f, 2.21912201e+002f, 2.59783997e+002f,
|
|
2.16053192e+002f, 2.78826569e+002f, 2.22782532e+002f, 2.82330383e+002f,
|
|
2.09924820e+002f, 2.89122559e+002f, 2.11077698e+002f, 2.89384674e+002f,
|
|
2.25287689e+002f, 2.88795532e+002f, 2.11180801e+002f, 2.89653503e+002f,
|
|
2.24126404e+002f, 2.90466064e+002f, 2.10914429e+002f, 2.90886963e+002f,
|
|
2.23439362e+002f, 2.91657715e+002f, 2.24809387e+002f, 2.91891602e+002f,
|
|
2.09809082e+002f, 2.92891113e+002f, 2.08771164e+002f, 2.93093231e+002f,
|
|
2.23160095e+002f, 2.93259460e+002f, 2.07874023e+002f, 2.93989990e+002f,
|
|
2.08963638e+002f, 2.94209839e+002f, 2.23963165e+002f, 2.94479645e+002f,
|
|
2.23241791e+002f, 2.94887817e+002f, 2.09438782e+002f, 2.95233337e+002f,
|
|
2.08901886e+002f, 2.95762878e+002f, 2.21867981e+002f, 2.95747711e+002f,
|
|
2.24195511e+002f, 2.98270905e+002f, 2.09331345e+002f, 3.05958191e+002f,
|
|
2.24727875e+002f, 3.07186035e+002f, 2.26718842e+002f, 3.08095795e+002f,
|
|
2.25363953e+002f, 3.08200226e+002f, 2.19897797e+002f, 3.13845093e+002f,
|
|
2.25013474e+002f, 3.15558777e+002f
|
|
};
|
|
|
|
float pt2data[] =
|
|
{
|
|
1.84072723e+002f, 1.43591202e+002f, 1.25912483e+002f, 1.63783859e+002f,
|
|
2.06439407e+002f, 2.20573929e+002f, 1.43801437e+002f, 1.80703903e+002f,
|
|
9.77904129e+000f, 2.49660202e+002f, 1.38458405e+001f, 2.14502701e+002f,
|
|
1.50636337e+002f, 2.15597183e+002f, 6.43103180e+001f, 2.51667648e+002f,
|
|
1.54952499e+002f, 2.20780014e+002f, 1.26638412e+002f, 2.43040924e+002f,
|
|
3.67568909e+002f, 1.83624954e+001f, 1.60657944e+002f, 2.21794052e+002f,
|
|
-1.29507828e+000f, 3.32472443e+002f, 8.51442242e+000f, 4.15561554e+002f,
|
|
1.27161377e+002f, 1.97260361e+002f, 5.40714645e+000f, 4.90978302e+002f,
|
|
2.25571690e+001f, 3.96912415e+002f, 2.95664978e+002f, 7.36064959e+000f,
|
|
1.27241104e+002f, 1.98887573e+002f, -1.25569367e+000f, 3.87713226e+002f,
|
|
1.04194012e+001f, 4.31495758e+002f, 1.25868874e+002f, 1.99751617e+002f,
|
|
1.28195480e+002f, 2.02270355e+002f, 2.23436356e+002f, 1.80489182e+002f,
|
|
1.28727692e+002f, 2.11185410e+002f, 2.03336639e+002f, 2.52182083e+002f,
|
|
1.29366486e+002f, 2.12201904e+002f, 1.23897598e+002f, 2.17847351e+002f,
|
|
1.29015259e+002f, 2.19560623e+002f
|
|
};
|
|
|
|
int npoints = (int)(sizeof(pt1data)/sizeof(pt1data[0])/2);
|
|
|
|
Mat p1(1, npoints, CV_32FC2, pt1data);
|
|
Mat p2(1, npoints, CV_32FC2, pt2data);
|
|
Mat mask;
|
|
|
|
Mat h = findHomography(p1, p2, RANSAC, 0.01, mask);
|
|
ASSERT_TRUE(!h.empty());
|
|
|
|
transpose(mask, mask);
|
|
Mat p3, mask2;
|
|
int ninliers = countNonZero(mask);
|
|
Mat nmask[] = { mask, mask };
|
|
merge(nmask, 2, mask2);
|
|
perspectiveTransform(p1, p3, h);
|
|
mask2 = mask2.reshape(1);
|
|
p2 = p2.reshape(1);
|
|
p3 = p3.reshape(1);
|
|
double err = norm(p2, p3, NORM_INF, mask2);
|
|
|
|
printf("ninliers: %d, inliers err: %.2g\n", ninliers, err);
|
|
ASSERT_GE(ninliers, 10);
|
|
ASSERT_LE(err, 0.01);
|
|
}
|
|
|
|
TEST(Calib3d_Homography, fromImages)
|
|
{
|
|
Mat img_1 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image1.png", 0);
|
|
Mat img_2 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image2.png", 0);
|
|
Ptr<ORB> orb = ORB::create();
|
|
vector<KeyPoint> keypoints_1, keypoints_2;
|
|
Mat descriptors_1, descriptors_2;
|
|
orb->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1, false );
|
|
orb->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2, false );
|
|
|
|
//-- Step 3: Matching descriptor vectors using Brute Force matcher
|
|
BFMatcher matcher(NORM_HAMMING,false);
|
|
std::vector< DMatch > matches;
|
|
matcher.match( descriptors_1, descriptors_2, matches );
|
|
|
|
double max_dist = 0; double min_dist = 100;
|
|
//-- Quick calculation of max and min distances between keypoints
|
|
for( int i = 0; i < descriptors_1.rows; i++ )
|
|
{
|
|
double dist = matches[i].distance;
|
|
if( dist < min_dist ) min_dist = dist;
|
|
if( dist > max_dist ) max_dist = dist;
|
|
}
|
|
|
|
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
|
|
std::vector< DMatch > good_matches;
|
|
for( int i = 0; i < descriptors_1.rows; i++ )
|
|
{
|
|
if( matches[i].distance <= 100 )
|
|
good_matches.push_back( matches[i]);
|
|
}
|
|
|
|
//-- Localize the model
|
|
std::vector<Point2f> pointframe1;
|
|
std::vector<Point2f> pointframe2;
|
|
for( int i = 0; i < (int)good_matches.size(); i++ )
|
|
{
|
|
//-- Get the keypoints from the good matches
|
|
pointframe1.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
|
|
pointframe2.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
|
|
}
|
|
|
|
Mat H0, H1, inliers0, inliers1;
|
|
double min_t0 = DBL_MAX, min_t1 = DBL_MAX;
|
|
for( int i = 0; i < 10; i++ )
|
|
{
|
|
double t = (double)getTickCount();
|
|
H0 = findHomography( pointframe1, pointframe2, RANSAC, 3.0, inliers0 );
|
|
t = (double)getTickCount() - t;
|
|
min_t0 = std::min(min_t0, t);
|
|
}
|
|
int ninliers0 = countNonZero(inliers0);
|
|
for( int i = 0; i < 10; i++ )
|
|
{
|
|
double t = (double)getTickCount();
|
|
H1 = findHomography( pointframe1, pointframe2, RHO, 3.0, inliers1 );
|
|
t = (double)getTickCount() - t;
|
|
min_t1 = std::min(min_t1, t);
|
|
}
|
|
int ninliers1 = countNonZero(inliers1);
|
|
double freq = getTickFrequency();
|
|
printf("nfeatures1 = %d, nfeatures2=%d, matches=%d, ninliers(RANSAC)=%d, "
|
|
"time(RANSAC)=%.2fmsec, ninliers(RHO)=%d, time(RHO)=%.2fmsec\n",
|
|
(int)keypoints_1.size(), (int)keypoints_2.size(),
|
|
(int)good_matches.size(), ninliers0, min_t0*1000./freq, ninliers1, min_t1*1000./freq);
|
|
|
|
ASSERT_TRUE(!H0.empty());
|
|
ASSERT_GE(ninliers0, 80);
|
|
ASSERT_TRUE(!H1.empty());
|
|
ASSERT_GE(ninliers1, 80);
|
|
}
|