opencv/modules/imgproc/src/deriv.cpp
Alexander Alekhin e845184843 Merge remote-tracking branch 'upstream/2.4' into merge-2.4
* #1538 from StevenPuttemans:bugfix_3283
* #1545 from alalek:ocl_test_fix_rng
* #1551 from alalek:cmake_install_win
* #1570 from ilya-lavrenov:ipp_warn_fix
* #1573 from alalek:perf_simple_strategy
* #1574 from alalek:svm_workaround
* #1576 from alalek:ocl_fix_cl_double
* #1577 from ilya-lavrenov:ocl_setto_opencl12
* #1578 from asmorkalov:android_fd_cp_fix
* #1579 from ilya-lavrenov:ocl_norm
* #1582 from sperrholz:ocl-arithm-additions
* #1586 from ilya-lavrenov:ocl_setto_win_fix
* #1589 from ilya-lavrenov:pr1582_fix
* #1591 from alalek:ocl_remove_cl_hpp_h
* #1592 from alalek:ocl_program_cache_update
* #1593 from ilya-lavrenov:ocl_war_on_double
* #1594 from ilya-lavrenov:ocl_perf
* #1595 from alalek:cl_code_cleanup
* #1596 from alalek:test_fix_run_py
* #1597 from alalek:ocl_fix_cleanup
* #1598 from alalek:ocl_fix_build_mac
* #1599 from ilya-lavrenov:ocl_mac_kernel_warnings
* #1601 from ilya-lavrenov:ocl_fix_tvl1_and_sparse
* #1602 from alalek:ocl_test_dump_info
* #1603 from ilya-lavrenov:ocl_disable_svm_noblas
* #1605 from alalek:ocl_fixes
* #1606 from ilya-lavrenov:ocl_imgproc
* #1607 from ilya-lavrenov:ocl_fft_cleanup
* #1608 from alalek:fix_warn_upd_haar
* #1609 from ilya-lavrenov:ocl_some_optimization
* #1610 from alalek:ocl_fix_perf_kalman
* #1612 from alalek:ocl_fix_string_info
* #1614 from ilya-lavrenov:ocl_svm_misprint
* #1616 from ilya-lavrenov:ocl_cvtColor
* #1617 from ilya-lavrenov:ocl_info
* #1622 from a0byte:2.4
* #1625 from ilya-lavrenov:to_string

Conflicts:
	cmake/OpenCVConfig.cmake
	cmake/OpenCVDetectPython.cmake
	cmake/OpenCVGenConfig.cmake
	modules/core/CMakeLists.txt
	modules/nonfree/src/surf.ocl.cpp
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/ocl/include/opencv2/ocl/private/util.hpp
	modules/ocl/perf/main.cpp
	modules/ocl/src/arithm.cpp
	modules/ocl/src/cl_operations.cpp
	modules/ocl/src/cl_programcache.cpp
	modules/ocl/src/color.cpp
	modules/ocl/src/fft.cpp
	modules/ocl/src/filtering.cpp
	modules/ocl/src/gemm.cpp
	modules/ocl/src/haar.cpp
	modules/ocl/src/imgproc.cpp
	modules/ocl/src/matrix_operations.cpp
	modules/ocl/src/pyrlk.cpp
	modules/ocl/src/split_merge.cpp
	modules/ocl/src/svm.cpp
	modules/ocl/test/main.cpp
	modules/ocl/test/test_fft.cpp
	modules/ocl/test/test_moments.cpp
	modules/ocl/test/test_objdetect.cpp
	modules/ocl/test/test_optflow.cpp
	modules/ocl/test/utility.hpp
	modules/python/CMakeLists.txt
	modules/ts/include/opencv2/ts.hpp
	modules/ts/src/ts_perf.cpp
	samples/android/face-detection/jni/DetectionBasedTracker_jni.cpp
2013-10-15 20:08:52 +04:00

594 lines
20 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
/****************************************************************************************\
Sobel & Scharr Derivative Filters
\****************************************************************************************/
namespace cv
{
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, bool normalize, int ktype )
{
const int ksize = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksize, 1, ktype, -1, true);
_ky.create(ksize, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int kerI[3];
if( order == 0 )
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize || order == 1 ? 1. : 1./32;
temp.convertTo(*kernel, ktype, scale);
}
}
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, int _ksize, bool normalize, int ktype )
{
int i, j, ksizeX = _ksize, ksizeY = _ksize;
if( ksizeX == 1 && dx > 0 )
ksizeX = 3;
if( ksizeY == 1 && dy > 0 )
ksizeY = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksizeX, 1, ktype, -1, true);
_ky.create(ksizeY, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int ksize = k == 0 ? ksizeX : ksizeY;
CV_Assert( ksize > order );
if( ksize == 1 )
kerI[0] = 1;
else if( ksize == 3 )
{
if( order == 0 )
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
else
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
}
else
{
int oldval, newval;
kerI[0] = 1;
for( i = 0; i < ksize; i++ )
kerI[i+1] = 0;
for( i = 0; i < ksize - order - 1; i++ )
{
oldval = kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j]+kerI[j-1];
kerI[j-1] = oldval;
oldval = newval;
}
}
for( i = 0; i < order; i++ )
{
oldval = -kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j-1] - kerI[j];
kerI[j-1] = oldval;
oldval = newval;
}
}
}
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
temp.convertTo(*kernel, ktype, scale);
}
}
}
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
int ksize, bool normalize, int ktype )
{
if( ksize <= 0 )
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
else
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
}
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
int dx, int dy, int ksize, int borderType )
{
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
return createSeparableLinearFilter(srcType, dstType,
kx, ky, Point(-1,-1), 0, borderType );
}
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
namespace cv
{
static bool IPPDerivScharr(const Mat& src, Mat& dst, int ddepth, int dx, int dy, double scale)
{
int bufSize = 0;
cv::AutoBuffer<char> buffer;
IppiSize roi = ippiSize(src.cols, src.rows);
if( ddepth < 0 )
ddepth = src.depth();
dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
switch(src.type())
{
case CV_8U:
{
if(scale != 1)
return false;
switch(dst.type())
{
case CV_16S:
{
if((dx == 1) && (dy == 0))
{
ippiFilterScharrVertGetBufferSize_8u16s_C1R(roi,&bufSize);
buffer.allocate(bufSize);
ippiFilterScharrVertBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 0) && (dy == 1))
{
ippiFilterScharrHorizGetBufferSize_8u16s_C1R(roi,&bufSize);
buffer.allocate(bufSize);
ippiFilterScharrHorizBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
}
default:
return false;
}
}
case CV_32F:
{
switch(dst.type())
{
case CV_32F:
if((dx == 1) && (dy == 0))
{
ippiFilterScharrVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize);
buffer.allocate(bufSize);
ippiFilterScharrVertBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
/* IPP is fast, so MulC produce very little perf degradation */
ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f*)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 1))
{
ippiFilterScharrHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize);
buffer.allocate(bufSize);
ippiFilterScharrHorizBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
default:
return false;
}
}
default:
return false;
}
}
static bool IPPDeriv(const Mat& src, Mat& dst, int ddepth, int dx, int dy, int ksize, double scale)
{
int bufSize = 0;
cv::AutoBuffer<char> buffer;
if(ksize == 3 || ksize == 5)
{
if( ddepth < 0 )
ddepth = src.depth();
if(src.type() == CV_8U && dst.type() == CV_16S && scale == 1)
{
if((dx == 1) && (dy == 0))
{
ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelNegVertBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 0) && (dy == 1))
{
ippiFilterSobelHorizGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelHorizBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 2) && (dy == 0))
{
ippiFilterSobelVertSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelVertSecondBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 0) && (dy == 2))
{
ippiFilterSobelHorizSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelHorizSecondBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
}
if(src.type() == CV_32F && dst.type() == CV_32F)
{
if((dx == 1) && (dy == 0))
{
ippiFilterSobelNegVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), &bufSize);
buffer.allocate(bufSize);
ippiFilterSobelNegVertBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 1))
{
ippiFilterSobelHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelHorizBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 2) && (dy == 0))
{
ippiFilterSobelVertSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelVertSecondBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 2))
{
ippiFilterSobelHorizSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
ippiFilterSobelHorizSecondBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
}
}
if(ksize <= 0)
return IPPDerivScharr(src, dst, ddepth, dx, dy, scale);
return false;
}
}
#endif
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType )
{
Mat src = _src.getMat();
if (ddepth < 0)
ddepth = src.depth();
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
return;
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if(dx < 3 && dy < 3 && src.channels() == 1 && borderType == 1)
{
if(IPPDeriv(src, dst, ddepth, dx, dy, ksize,scale))
return;
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, src.depth()));
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( src, dst, ddepth, kx, ky, Point(-1,-1), delta, borderType );
}
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
double scale, double delta, int borderType )
{
Mat src = _src.getMat();
if (ddepth < 0)
ddepth = src.depth();
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
if (tegra::scharr(src, dst, dx, dy, borderType))
return;
#endif
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if(dx < 2 && dy < 2 && src.channels() == 1 && borderType == 1)
{
if(IPPDerivScharr(src, dst, ddepth, dx, dy, scale))
return;
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, src.depth()));
Mat kx, ky;
getScharrKernels( kx, ky, dx, dy, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( src, dst, ddepth, kx, ky, Point(-1,-1), delta, borderType );
}
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
double scale, double delta, int borderType )
{
Mat src = _src.getMat();
if (ddepth < 0)
ddepth = src.depth();
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
Mat dst = _dst.getMat();
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
if (ksize == 1 && tegra::laplace1(src, dst, borderType))
return;
if (ksize == 3 && tegra::laplace3(src, dst, borderType))
return;
if (ksize == 5 && tegra::laplace5(src, dst, borderType))
return;
}
#endif
if( ksize == 1 || ksize == 3 )
{
float K[2][9] =
{{0, 1, 0, 1, -4, 1, 0, 1, 0},
{2, 0, 2, 0, -8, 0, 2, 0, 2}};
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
if( scale != 1 )
kernel *= scale;
filter2D( src, dst, ddepth, kernel, Point(-1,-1), delta, borderType );
}
else
{
const size_t STRIPE_SIZE = 1 << 14;
int depth = src.depth();
int ktype = std::max(CV_32F, std::max(ddepth, depth));
int wdepth = depth == CV_8U && ksize <= 5 ? CV_16S : depth <= CV_32F ? CV_32F : CV_64F;
int wtype = CV_MAKETYPE(wdepth, src.channels());
Mat kd, ks;
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
if( ddepth < 0 )
ddepth = src.depth();
int dtype = CV_MAKETYPE(ddepth, src.channels());
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(getElemSize(src.type())*src.cols)), 1), src.rows);
Ptr<FilterEngine> fx = createSeparableLinearFilter(src.type(),
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
Ptr<FilterEngine> fy = createSeparableLinearFilter(src.type(),
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
int y = fx->start(src), dsty = 0, dy = 0;
fy->start(src);
const uchar* sptr = src.data + y*src.step;
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
{
fx->proceed( sptr, (int)src.step, dy0, d2x.data, (int)d2x.step );
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.data, (int)d2y.step );
if( dy > 0 )
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
d2x.rows = d2y.rows = dy; // modify the headers, which should work
d2x += d2y;
d2x.convertTo( dstripe, dtype, scale, delta );
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
dst *= -1;
}
CV_IMPL void
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
}
/* End of file. */