mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
310 lines
11 KiB
C++
310 lines
11 KiB
C++
#include <fstream>
|
|
#include <sstream>
|
|
#include <iostream>
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
#include "common.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
using namespace dnn;
|
|
|
|
const string about =
|
|
"Use this script to run semantic segmentation deep learning networks using OpenCV.\n\n"
|
|
"Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"
|
|
"To run:\n"
|
|
"\t ./example_dnn_classification modelName(e.g. u2netp) --input=$OPENCV_SAMPLES_DATA_PATH/butterfly.jpg (or ignore this argument to use device camera)\n"
|
|
"Model path can also be specified using --model argument.";
|
|
|
|
const string param_keys =
|
|
"{ help h | | Print help message. }"
|
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
|
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
|
|
"{ device | 0 | camera device number. }"
|
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
|
|
"{ colors | | Optional path to a text file with colors for an every class. "
|
|
"Every color is represented with three values from 0 to 255 in BGR channels order. }";
|
|
|
|
const string backend_keys = format(
|
|
"{ backend | default | Choose one of computation backends: "
|
|
"default: automatically (by default), "
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"opencv: OpenCV implementation, "
|
|
"vkcom: VKCOM, "
|
|
"cuda: CUDA, "
|
|
"webnn: WebNN }");
|
|
|
|
const string target_keys = format(
|
|
"{ target | cpu | Choose one of target computation devices: "
|
|
"cpu: CPU target (by default), "
|
|
"opencl: OpenCL, "
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
"vpu: VPU, "
|
|
"vulkan: Vulkan, "
|
|
"cuda: CUDA, "
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess) }");
|
|
|
|
string keys = param_keys + backend_keys + target_keys;
|
|
vector<string> labels;
|
|
vector<Vec3b> colors;
|
|
|
|
|
|
static void colorizeSegmentation(const Mat &score, Mat &segm)
|
|
{
|
|
const int rows = score.size[2];
|
|
const int cols = score.size[3];
|
|
const int chns = score.size[1];
|
|
|
|
if (colors.empty())
|
|
{
|
|
// Generate colors.
|
|
colors.push_back(Vec3b());
|
|
for (int i = 1; i < chns; ++i)
|
|
{
|
|
Vec3b color;
|
|
for (int j = 0; j < 3; ++j)
|
|
color[j] = (colors[i - 1][j] + rand() % 256) / 2;
|
|
colors.push_back(color);
|
|
}
|
|
}
|
|
else if (chns != (int)colors.size())
|
|
{
|
|
CV_Error(Error::StsError, format("Number of output labels does not match "
|
|
"number of colors (%d != %zu)",
|
|
chns, colors.size()));
|
|
}
|
|
|
|
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
|
|
Mat maxVal(rows, cols, CV_32FC1, score.data);
|
|
for (int ch = 1; ch < chns; ch++)
|
|
{
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const float *ptrScore = score.ptr<float>(0, ch, row);
|
|
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
|
|
float *ptrMaxVal = maxVal.ptr<float>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
if (ptrScore[col] > ptrMaxVal[col])
|
|
{
|
|
ptrMaxVal[col] = ptrScore[col];
|
|
ptrMaxCl[col] = (uchar)ch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
segm.create(rows, cols, CV_8UC3);
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
ptrSegm[col] = colors[ptrMaxCl[col]];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void showLegend(FontFace fontFace)
|
|
{
|
|
static const int kBlockHeight = 30;
|
|
static Mat legend;
|
|
if (legend.empty())
|
|
{
|
|
const int numClasses = (int)labels.size();
|
|
if ((int)colors.size() != numClasses)
|
|
{
|
|
CV_Error(Error::StsError, format("Number of output labels does not match "
|
|
"number of labels (%zu != %zu)",
|
|
colors.size(), labels.size()));
|
|
}
|
|
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
|
|
for (int i = 0; i < numClasses; i++)
|
|
{
|
|
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
|
|
block.setTo(colors[i]);
|
|
Rect r = getTextSize(Size(), labels[i], Point(), fontFace, 15, 400);
|
|
r.height += 15; // padding
|
|
r.width += 10; // padding
|
|
rectangle(block, r, Scalar::all(255), FILLED);
|
|
putText(block, labels[i], Point(10, kBlockHeight/2), Scalar(0,0,0), fontFace, 15, 400);
|
|
}
|
|
namedWindow("Legend", WINDOW_AUTOSIZE);
|
|
imshow("Legend", legend);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
const string modelName = parser.get<String>("@alias");
|
|
const string zooFile = findFile(parser.get<String>("zoo"));
|
|
|
|
keys += genPreprocArguments(modelName, zooFile);
|
|
|
|
parser = CommandLineParser(argc, argv, keys);
|
|
parser.about(about);
|
|
if (!parser.has("@alias") || parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
string sha1 = parser.get<String>("sha1");
|
|
float scale = parser.get<float>("scale");
|
|
Scalar mean = parser.get<Scalar>("mean");
|
|
bool swapRB = parser.get<bool>("rgb");
|
|
int inpWidth = parser.get<int>("width");
|
|
int inpHeight = parser.get<int>("height");
|
|
String model = findModel(parser.get<String>("model"), sha1);
|
|
const string backend = parser.get<String>("backend");
|
|
const string target = parser.get<String>("target");
|
|
int stdSize = 20;
|
|
int stdWeight = 400;
|
|
int stdImgSize = 512;
|
|
int imgWidth = -1; // Initialization
|
|
int fontSize = 50;
|
|
int fontWeight = 500;
|
|
FontFace fontFace("sans");
|
|
|
|
// Open file with labels names.
|
|
if (parser.has("labels"))
|
|
{
|
|
string file = findFile(parser.get<String>("labels"));
|
|
ifstream ifs(file.c_str());
|
|
if (!ifs.is_open())
|
|
CV_Error(Error::StsError, "File " + file + " not found");
|
|
string line;
|
|
while (getline(ifs, line))
|
|
{
|
|
labels.push_back(line);
|
|
}
|
|
}
|
|
// Open file with colors.
|
|
if (parser.has("colors"))
|
|
{
|
|
string file = findFile(parser.get<String>("colors"));
|
|
ifstream ifs(file.c_str());
|
|
if (!ifs.is_open())
|
|
CV_Error(Error::StsError, "File " + file + " not found");
|
|
string line;
|
|
while (getline(ifs, line))
|
|
{
|
|
istringstream colorStr(line.c_str());
|
|
|
|
Vec3b color;
|
|
for (int i = 0; i < 3 && !colorStr.eof(); ++i)
|
|
colorStr >> color[i];
|
|
colors.push_back(color);
|
|
}
|
|
}
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 1;
|
|
}
|
|
|
|
CV_Assert(!model.empty());
|
|
//! [Read and initialize network]
|
|
EngineType engine = ENGINE_AUTO;
|
|
if (backend != "default" || target != "cpu"){
|
|
engine = ENGINE_CLASSIC;
|
|
}
|
|
Net net = readNetFromONNX(model, engine);
|
|
net.setPreferableBackend(getBackendID(backend));
|
|
net.setPreferableTarget(getTargetID(target));
|
|
//! [Read and initialize network]
|
|
// Create a window
|
|
static const string kWinName = "Deep learning semantic segmentation in OpenCV";
|
|
namedWindow(kWinName, WINDOW_AUTOSIZE);
|
|
|
|
//! [Open a video file or an image file or a camera stream]
|
|
VideoCapture cap;
|
|
if (parser.has("input"))
|
|
cap.open(findFile(parser.get<String>("input")));
|
|
else
|
|
cap.open(parser.get<int>("device"));
|
|
|
|
if (!cap.isOpened()) {
|
|
cerr << "Error: Video could not be opened." << endl;
|
|
return -1;
|
|
}
|
|
|
|
//! [Open a video file or an image file or a camera stream]
|
|
// Process frames.
|
|
Mat frame, blob;
|
|
while (waitKey(1) < 0)
|
|
{
|
|
cap >> frame;
|
|
if (frame.empty())
|
|
{
|
|
waitKey();
|
|
break;
|
|
}
|
|
if (imgWidth == -1){
|
|
imgWidth = max(frame.rows, frame.cols);
|
|
fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize);
|
|
fontWeight = min(fontWeight, (stdWeight*imgWidth)/stdImgSize);
|
|
}
|
|
imshow("Original Image", frame);
|
|
//! [Create a 4D blob from a frame]
|
|
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
|
|
//! [Set input blob]
|
|
net.setInput(blob);
|
|
//! [Set input blob]
|
|
|
|
if (modelName == "u2netp")
|
|
{
|
|
vector<Mat> output;
|
|
net.forward(output, net.getUnconnectedOutLayersNames());
|
|
|
|
Mat pred = output[0].reshape(1, output[0].size[2]);
|
|
pred.convertTo(pred, CV_8U, 255.0);
|
|
Mat mask;
|
|
resize(pred, mask, Size(frame.cols, frame.rows), 0, 0, INTER_AREA);
|
|
|
|
// Create overlays for foreground and background
|
|
Mat foreground_overlay;
|
|
|
|
// Set foreground (object) to red
|
|
Mat all_zeros = Mat::zeros(frame.size(), CV_8UC1);
|
|
vector<Mat> channels = {all_zeros, all_zeros, mask};
|
|
merge(channels, foreground_overlay);
|
|
|
|
// Blend the overlays with the original frame
|
|
addWeighted(frame, 0.25, foreground_overlay, 0.75, 0, frame);
|
|
}
|
|
else
|
|
{
|
|
//! [Make forward pass]
|
|
Mat score = net.forward();
|
|
//! [Make forward pass]
|
|
Mat segm;
|
|
colorizeSegmentation(score, segm);
|
|
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST);
|
|
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame);
|
|
}
|
|
|
|
// Put efficiency information.
|
|
vector<double> layersTimes;
|
|
double freq = getTickFrequency() / 1000;
|
|
double t = net.getPerfProfile(layersTimes) / freq;
|
|
string label = format("Inference time: %.2f ms", t);
|
|
Rect r = getTextSize(Size(), label, Point(), fontFace, fontSize, fontWeight);
|
|
r.height += fontSize; // padding
|
|
r.width += 10; // padding
|
|
rectangle(frame, r, Scalar::all(255), FILLED);
|
|
putText(frame, label, Point(10, fontSize), Scalar(0,0,0), fontFace, fontSize, fontWeight);
|
|
|
|
imshow(kWinName, frame);
|
|
if (!labels.empty())
|
|
showLegend(fontFace);
|
|
}
|
|
return 0;
|
|
}
|