mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
317 lines
11 KiB
C++
317 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/hal/intrin.hpp"
|
|
|
|
#include <iostream>
|
|
namespace cv
|
|
{
|
|
|
|
/* NOTE:
|
|
*
|
|
* Sobel-x: -1 0 1
|
|
* -2 0 2
|
|
* -1 0 1
|
|
*
|
|
* Sobel-y: -1 -2 -1
|
|
* 0 0 0
|
|
* 1 2 1
|
|
*/
|
|
template <typename T>
|
|
static inline void spatialGradientKernel( T& vx, T& vy,
|
|
T v00, T v01, T v02,
|
|
T v10, T v12,
|
|
T v20, T v21, T v22 )
|
|
{
|
|
// vx = (v22 - v00) + (v02 - v20) + 2 * (v12 - v10)
|
|
// vy = (v22 - v00) + (v20 - v02) + 2 * (v21 - v01)
|
|
|
|
T tmp_add = v22 - v00,
|
|
tmp_sub = v02 - v20,
|
|
tmp_x = v12 - v10,
|
|
tmp_y = v21 - v01;
|
|
|
|
vx = tmp_add + tmp_sub + tmp_x + tmp_x;
|
|
vy = tmp_add - tmp_sub + tmp_y + tmp_y;
|
|
}
|
|
|
|
void spatialGradient( InputArray _src, OutputArray _dx, OutputArray _dy,
|
|
int ksize, int borderType )
|
|
{
|
|
|
|
// Prepare InputArray src
|
|
Mat src = _src.getMat();
|
|
CV_Assert( !src.empty() );
|
|
CV_Assert( src.type() == CV_8UC1 );
|
|
CV_Assert( borderType == BORDER_DEFAULT || borderType == BORDER_REPLICATE );
|
|
|
|
// Prepare OutputArrays dx, dy
|
|
_dx.create( src.size(), CV_16SC1 );
|
|
_dy.create( src.size(), CV_16SC1 );
|
|
Mat dx = _dx.getMat(),
|
|
dy = _dy.getMat();
|
|
|
|
// TODO: Allow for other kernel sizes
|
|
CV_Assert(ksize == 3);
|
|
|
|
// Get dimensions
|
|
const int H = src.rows,
|
|
W = src.cols;
|
|
|
|
// Row, column indices
|
|
int i = 0,
|
|
j = 0;
|
|
|
|
// Store pointers to rows of input/output data
|
|
// Padded by two rows for border handling
|
|
std::vector<uchar*> P_src(H+2);
|
|
std::vector<short*> P_dx (H+2);
|
|
std::vector<short*> P_dy (H+2);
|
|
|
|
int i_top = 0, // Case for H == 1 && W == 1 && BORDER_REPLICATE
|
|
i_bottom = H - 1,
|
|
j_offl = 0, // j offset from 0th pixel to reach -1st pixel
|
|
j_offr = 0; // j offset from W-1th pixel to reach Wth pixel
|
|
|
|
if ( borderType == BORDER_DEFAULT ) // Equiv. to BORDER_REFLECT_101
|
|
{
|
|
if ( H > 1 )
|
|
{
|
|
i_top = 1;
|
|
i_bottom = H - 2;
|
|
}
|
|
if ( W > 1 )
|
|
{
|
|
j_offl = 1;
|
|
j_offr = -1;
|
|
}
|
|
}
|
|
|
|
P_src[0] = src.ptr<uchar>(i_top); // Mirrored top border
|
|
P_src[H+1] = src.ptr<uchar>(i_bottom); // Mirrored bottom border
|
|
|
|
for ( i = 0; i < H; i++ )
|
|
{
|
|
P_src[i+1] = src.ptr<uchar>(i);
|
|
P_dx [i] = dx.ptr<short>(i);
|
|
P_dy [i] = dy.ptr<short>(i);
|
|
}
|
|
|
|
// Pointer to row vectors
|
|
uchar *p_src, *c_src, *n_src; // previous, current, next row
|
|
short *c_dx, *c_dy;
|
|
|
|
int i_start = 0;
|
|
int j_start = 0;
|
|
#if CV_SIMD128
|
|
uchar *m_src;
|
|
short *n_dx, *n_dy;
|
|
|
|
// Characters in variable names have the following meanings:
|
|
// u: unsigned char
|
|
// s: signed int
|
|
//
|
|
// [row][column]
|
|
// m: offset -1
|
|
// n: offset 0
|
|
// p: offset 1
|
|
// Example: umn is offset -1 in row and offset 0 in column
|
|
for ( i = 0; i < H - 1; i += 2 )
|
|
{
|
|
p_src = P_src[i]; c_src = P_src[i+1]; n_src = P_src[i+2]; m_src = P_src[i+3];
|
|
c_dx = P_dx[i]; c_dy = P_dy[i]; n_dx = P_dx[i+1]; n_dy = P_dy[i+1];
|
|
|
|
// Process rest of columns 16-column chunks at a time
|
|
for ( j = 1; j < W - 16; j += 16 )
|
|
{
|
|
// Load top row for 3x3 Sobel filter
|
|
v_uint8x16 v_um = v_load(&p_src[j-1]);
|
|
v_uint8x16 v_un = v_load(&p_src[j]);
|
|
v_uint8x16 v_up = v_load(&p_src[j+1]);
|
|
v_uint16x8 v_um1, v_um2, v_un1, v_un2, v_up1, v_up2;
|
|
v_expand(v_um, v_um1, v_um2);
|
|
v_expand(v_un, v_un1, v_un2);
|
|
v_expand(v_up, v_up1, v_up2);
|
|
v_int16x8 v_s1m1 = v_reinterpret_as_s16(v_um1);
|
|
v_int16x8 v_s1m2 = v_reinterpret_as_s16(v_um2);
|
|
v_int16x8 v_s1n1 = v_reinterpret_as_s16(v_un1);
|
|
v_int16x8 v_s1n2 = v_reinterpret_as_s16(v_un2);
|
|
v_int16x8 v_s1p1 = v_reinterpret_as_s16(v_up1);
|
|
v_int16x8 v_s1p2 = v_reinterpret_as_s16(v_up2);
|
|
|
|
// Load second row for 3x3 Sobel filter
|
|
v_um = v_load(&c_src[j-1]);
|
|
v_un = v_load(&c_src[j]);
|
|
v_up = v_load(&c_src[j+1]);
|
|
v_expand(v_um, v_um1, v_um2);
|
|
v_expand(v_un, v_un1, v_un2);
|
|
v_expand(v_up, v_up1, v_up2);
|
|
v_int16x8 v_s2m1 = v_reinterpret_as_s16(v_um1);
|
|
v_int16x8 v_s2m2 = v_reinterpret_as_s16(v_um2);
|
|
v_int16x8 v_s2n1 = v_reinterpret_as_s16(v_un1);
|
|
v_int16x8 v_s2n2 = v_reinterpret_as_s16(v_un2);
|
|
v_int16x8 v_s2p1 = v_reinterpret_as_s16(v_up1);
|
|
v_int16x8 v_s2p2 = v_reinterpret_as_s16(v_up2);
|
|
|
|
// Load third row for 3x3 Sobel filter
|
|
v_um = v_load(&n_src[j-1]);
|
|
v_un = v_load(&n_src[j]);
|
|
v_up = v_load(&n_src[j+1]);
|
|
v_expand(v_um, v_um1, v_um2);
|
|
v_expand(v_un, v_un1, v_un2);
|
|
v_expand(v_up, v_up1, v_up2);
|
|
v_int16x8 v_s3m1 = v_reinterpret_as_s16(v_um1);
|
|
v_int16x8 v_s3m2 = v_reinterpret_as_s16(v_um2);
|
|
v_int16x8 v_s3n1 = v_reinterpret_as_s16(v_un1);
|
|
v_int16x8 v_s3n2 = v_reinterpret_as_s16(v_un2);
|
|
v_int16x8 v_s3p1 = v_reinterpret_as_s16(v_up1);
|
|
v_int16x8 v_s3p2 = v_reinterpret_as_s16(v_up2);
|
|
|
|
// Load fourth row for 3x3 Sobel filter
|
|
v_um = v_load(&m_src[j-1]);
|
|
v_un = v_load(&m_src[j]);
|
|
v_up = v_load(&m_src[j+1]);
|
|
|
|
v_expand(v_um, v_um1, v_um2);
|
|
v_expand(v_un, v_un1, v_un2);
|
|
v_expand(v_up, v_up1, v_up2);
|
|
v_int16x8 v_s4m1 = v_reinterpret_as_s16(v_um1);
|
|
v_int16x8 v_s4m2 = v_reinterpret_as_s16(v_um2);
|
|
v_int16x8 v_s4n1 = v_reinterpret_as_s16(v_un1);
|
|
v_int16x8 v_s4n2 = v_reinterpret_as_s16(v_un2);
|
|
v_int16x8 v_s4p1 = v_reinterpret_as_s16(v_up1);
|
|
v_int16x8 v_s4p2 = v_reinterpret_as_s16(v_up2);
|
|
|
|
// dx & dy for rows 1, 2, 3
|
|
v_int16x8 v_sdx1, v_sdy1;
|
|
spatialGradientKernel<v_int16x8>( v_sdx1, v_sdy1,
|
|
v_s1m1, v_s1n1, v_s1p1,
|
|
v_s2m1, v_s2p1,
|
|
v_s3m1, v_s3n1, v_s3p1 );
|
|
|
|
v_int16x8 v_sdx2, v_sdy2;
|
|
spatialGradientKernel<v_int16x8>( v_sdx2, v_sdy2,
|
|
v_s1m2, v_s1n2, v_s1p2,
|
|
v_s2m2, v_s2p2,
|
|
v_s3m2, v_s3n2, v_s3p2 );
|
|
|
|
// Store
|
|
v_store(&c_dx[j], v_sdx1);
|
|
v_store(&c_dx[j+8], v_sdx2);
|
|
v_store(&c_dy[j], v_sdy1);
|
|
v_store(&c_dy[j+8], v_sdy2);
|
|
|
|
// dx & dy for rows 2, 3, 4
|
|
spatialGradientKernel<v_int16x8>( v_sdx1, v_sdy1,
|
|
v_s2m1, v_s2n1, v_s2p1,
|
|
v_s3m1, v_s3p1,
|
|
v_s4m1, v_s4n1, v_s4p1 );
|
|
|
|
spatialGradientKernel<v_int16x8>( v_sdx2, v_sdy2,
|
|
v_s2m2, v_s2n2, v_s2p2,
|
|
v_s3m2, v_s3p2,
|
|
v_s4m2, v_s4n2, v_s4p2 );
|
|
|
|
// Store
|
|
v_store(&n_dx[j], v_sdx1);
|
|
v_store(&n_dx[j+8], v_sdx2);
|
|
v_store(&n_dy[j], v_sdy1);
|
|
v_store(&n_dy[j+8], v_sdy2);
|
|
}
|
|
}
|
|
i_start = i;
|
|
j_start = j;
|
|
#endif
|
|
int j_p, j_n;
|
|
uchar v00, v01, v02, v10, v11, v12, v20, v21, v22;
|
|
for ( i = 0; i < H; i++ )
|
|
{
|
|
p_src = P_src[i]; c_src = P_src[i+1]; n_src = P_src[i+2];
|
|
c_dx = P_dx [i];
|
|
c_dy = P_dy [i];
|
|
|
|
// Process left-most column
|
|
j = 0;
|
|
j_p = j + j_offl;
|
|
j_n = 1;
|
|
if ( j_n >= W ) j_n = j + j_offr;
|
|
v00 = p_src[j_p]; v01 = p_src[j]; v02 = p_src[j_n];
|
|
v10 = c_src[j_p]; v11 = c_src[j]; v12 = c_src[j_n];
|
|
v20 = n_src[j_p]; v21 = n_src[j]; v22 = n_src[j_n];
|
|
spatialGradientKernel<short>( c_dx[0], c_dy[0], v00, v01, v02, v10,
|
|
v12, v20, v21, v22 );
|
|
v00 = v01; v10 = v11; v20 = v21;
|
|
v01 = v02; v11 = v12; v21 = v22;
|
|
|
|
// Process middle columns
|
|
j = i >= i_start ? 1 : j_start;
|
|
j_p = j - 1;
|
|
v00 = p_src[j_p]; v01 = p_src[j];
|
|
v10 = c_src[j_p]; v11 = c_src[j];
|
|
v20 = n_src[j_p]; v21 = n_src[j];
|
|
|
|
for ( ; j < W - 1; j++ )
|
|
{
|
|
// Get values for next column
|
|
j_n = j + 1; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n];
|
|
spatialGradientKernel<short>( c_dx[j], c_dy[j], v00, v01, v02, v10,
|
|
v12, v20, v21, v22 );
|
|
|
|
// Move values back one column for next iteration
|
|
v00 = v01; v10 = v11; v20 = v21;
|
|
v01 = v02; v11 = v12; v21 = v22;
|
|
}
|
|
|
|
// Process right-most column
|
|
if ( j < W )
|
|
{
|
|
j_n = j + j_offr; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n];
|
|
spatialGradientKernel<short>( c_dx[j], c_dy[j], v00, v01, v02, v10,
|
|
v12, v20, v21, v22 );
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|