mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
683 lines
26 KiB
C++
683 lines
26 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2018 Intel Corporation
|
|
|
|
#include "precomp.hpp"
|
|
|
|
// needs to be included regardless if IE is present or not
|
|
// (cv::gapi::ie::backend() is still there and is defined always)
|
|
#include "backends/ie/giebackend.hpp"
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
#if INF_ENGINE_RELEASE <= 2019010000
|
|
# error G-API IE module supports only OpenVINO IE >= 2019 R1
|
|
#endif
|
|
|
|
#include <functional>
|
|
#include <unordered_set>
|
|
|
|
#include <ade/util/algorithm.hpp>
|
|
|
|
#include <ade/util/range.hpp>
|
|
#include <ade/util/zip_range.hpp>
|
|
#include <ade/util/chain_range.hpp>
|
|
#include <ade/typed_graph.hpp>
|
|
|
|
#include <opencv2/core/utility.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
#include <opencv2/gapi/gcommon.hpp>
|
|
#include <opencv2/gapi/garray.hpp>
|
|
#include <opencv2/gapi/util/any.hpp>
|
|
#include <opencv2/gapi/gtype_traits.hpp>
|
|
#include <opencv2/gapi/infer.hpp>
|
|
|
|
#include "compiler/gobjref.hpp"
|
|
#include "compiler/gmodel.hpp"
|
|
|
|
#include "backends/ie/util.hpp"
|
|
|
|
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
|
|
|
|
namespace IE = InferenceEngine;
|
|
|
|
namespace {
|
|
|
|
inline IE::ROI toIE(const cv::Rect &rc) {
|
|
return IE::ROI
|
|
{ 0u
|
|
, static_cast<std::size_t>(rc.x)
|
|
, static_cast<std::size_t>(rc.y)
|
|
, static_cast<std::size_t>(rc.width)
|
|
, static_cast<std::size_t>(rc.height)
|
|
};
|
|
}
|
|
|
|
inline IE::SizeVector toIE(const cv::MatSize &sz) {
|
|
return cv::to_own<IE::SizeVector::value_type>(sz);
|
|
}
|
|
inline std::vector<int> toCV(const IE::SizeVector &vsz) {
|
|
std::vector<int> result;
|
|
result.reserve(vsz.size());
|
|
for (auto sz : vsz) {
|
|
result.push_back(ade::util::checked_cast<int>(sz));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline IE::Layout toIELayout(const std::size_t ndims) {
|
|
static const IE::Layout lts[] = {
|
|
IE::Layout::SCALAR,
|
|
IE::Layout::C,
|
|
IE::Layout::NC,
|
|
IE::Layout::CHW,
|
|
IE::Layout::NCHW,
|
|
IE::Layout::NCDHW,
|
|
};
|
|
// FIXME: This is not really a good conversion,
|
|
// since it may also stand for NHWC/HW/CN/NDHWC data
|
|
CV_Assert(ndims < sizeof(lts) / sizeof(lts[0]));
|
|
return lts[ndims];
|
|
}
|
|
|
|
inline IE::Precision toIE(int depth) {
|
|
switch (depth) {
|
|
case CV_8U: return IE::Precision::U8;
|
|
case CV_32F: return IE::Precision::FP32;
|
|
default: GAPI_Assert(false && "Unsupported data type");
|
|
}
|
|
return IE::Precision::UNSPECIFIED;
|
|
}
|
|
inline int toCV(IE::Precision prec) {
|
|
switch (prec) {
|
|
case IE::Precision::U8: return CV_8U;
|
|
case IE::Precision::FP32: return CV_32F;
|
|
default: GAPI_Assert(false && "Unsupported data type");
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
inline IE::TensorDesc toIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
|
|
const auto &sz = mat.size;
|
|
|
|
// NB: For some reason RGB image is 2D image
|
|
// (since channel component is not counted here).
|
|
// Note: regular 2D vectors also fall into this category
|
|
if (sz.dims() == 2 && hint == cv::gapi::ie::TraitAs::IMAGE)
|
|
{
|
|
// NB: This logic is mainly taken from IE samples
|
|
const size_t pixsz = CV_ELEM_SIZE1(mat.type());
|
|
const size_t channels = mat.channels();
|
|
const size_t height = mat.size().height;
|
|
const size_t width = mat.size().width;
|
|
|
|
const size_t strideH = mat.step.buf[0];
|
|
const size_t strideW = mat.step.buf[1];
|
|
|
|
const bool is_dense =
|
|
strideW == pixsz * channels &&
|
|
strideH == strideW * width;
|
|
|
|
if (!is_dense)
|
|
cv::util::throw_error(std::logic_error("Doesn't support conversion"
|
|
" from non-dense cv::Mat"));
|
|
|
|
return IE::TensorDesc(toIE(mat.depth()),
|
|
IE::SizeVector{1, channels, height, width},
|
|
IE::Layout::NHWC);
|
|
}
|
|
|
|
return IE::TensorDesc(toIE(mat.depth()), toIE(sz), toIELayout(sz.dims()));
|
|
}
|
|
|
|
inline IE::Blob::Ptr wrapIE(const cv::Mat &mat, cv::gapi::ie::TraitAs hint) {
|
|
const auto tDesc = toIE(mat, hint);
|
|
switch (mat.depth()) {
|
|
// NB: Seems there's no way to create an untyped (T-less) Blob::Ptr
|
|
// in IE given only precision via TensorDesc. So we have to do this:
|
|
#define HANDLE(E,T) \
|
|
case CV_##E: return IE::make_shared_blob<T>(tDesc, const_cast<T*>(mat.ptr<T>()))
|
|
HANDLE(8U, uint8_t);
|
|
HANDLE(32F, float);
|
|
#undef HANDLE
|
|
default: GAPI_Assert(false && "Unsupported data type");
|
|
}
|
|
return IE::Blob::Ptr{};
|
|
}
|
|
|
|
template<class MatType>
|
|
inline void copyFromIE(const IE::Blob::Ptr &blob, MatType &mat) {
|
|
switch (blob->getTensorDesc().getPrecision()) {
|
|
#define HANDLE(E,T) \
|
|
case IE::Precision::E: std::copy_n(blob->buffer().as<T*>(), \
|
|
mat.total(), \
|
|
reinterpret_cast<T*>(mat.data)); \
|
|
break;
|
|
HANDLE(U8, uint8_t);
|
|
HANDLE(FP32, float);
|
|
#undef HANDLE
|
|
default: GAPI_Assert(false && "Unsupported data type");
|
|
}
|
|
}
|
|
|
|
// IE-specific metadata, represents a network with its parameters
|
|
struct IEUnit {
|
|
static const char *name() { return "IEModelConfig"; }
|
|
|
|
cv::gapi::ie::detail::ParamDesc params;
|
|
IE::CNNNetwork net;
|
|
IE::InputsDataMap inputs;
|
|
IE::OutputsDataMap outputs;
|
|
|
|
explicit IEUnit(const cv::gapi::ie::detail::ParamDesc &pp)
|
|
: params(pp) {
|
|
|
|
IE::CNNNetReader reader;
|
|
reader.ReadNetwork(params.model_path);
|
|
reader.ReadWeights(params.weights_path);
|
|
net = reader.getNetwork();
|
|
inputs = net.getInputsInfo();
|
|
outputs = net.getOutputsInfo();
|
|
|
|
// The practice shows that not all inputs and not all outputs
|
|
// are mandatory to specify in IE model.
|
|
// So what we're concerned here about is:
|
|
// if operation's (not topology's) input/output number is
|
|
// greater than 1, then we do care about input/output layer
|
|
// names. Otherwise, names are picked up automatically.
|
|
// TODO: Probably this check could be done at the API entry point? (gnet)
|
|
if (params.num_in > 1u && params.num_in != params.input_names.size()) {
|
|
cv::util::throw_error(std::logic_error("Please specify input layer names for "
|
|
+ params.model_path));
|
|
}
|
|
if (params.num_out > 1u && params.num_out != params.output_names.size()) {
|
|
cv::util::throw_error(std::logic_error("Please specify output layer names for "
|
|
+ params.model_path));
|
|
}
|
|
if (params.num_in == 1u && params.input_names.empty()) {
|
|
params.input_names = { inputs.begin()->first };
|
|
}
|
|
if (params.num_out == 1u && params.output_names.empty()) {
|
|
params.output_names = { outputs.begin()->first };
|
|
}
|
|
}
|
|
|
|
// This method is [supposed to be] called at Island compilation stage
|
|
// TODO: Move to a new OpenVINO Core API!
|
|
cv::gimpl::ie::IECompiled compile() const {
|
|
auto this_plugin = IE::PluginDispatcher().getPluginByDevice(params.device_id);
|
|
|
|
// Load extensions (taken from DNN module)
|
|
if (params.device_id == "CPU" || params.device_id == "FPGA")
|
|
{
|
|
const std::string suffixes[] = { "_avx2", "_sse4", ""};
|
|
const bool haveFeature[] = {
|
|
cv::checkHardwareSupport(CPU_AVX2),
|
|
cv::checkHardwareSupport(CPU_SSE4_2),
|
|
true
|
|
};
|
|
std::vector<std::string> candidates;
|
|
for (auto &&it : ade::util::zip(ade::util::toRange(suffixes),
|
|
ade::util::toRange(haveFeature)))
|
|
{
|
|
std::string suffix;
|
|
bool available = false;
|
|
std::tie(suffix, available) = it;
|
|
if (!available) continue;
|
|
#ifdef _WIN32
|
|
candidates.push_back("cpu_extension" + suffix + ".dll");
|
|
#elif defined(__APPLE__)
|
|
candidates.push_back("libcpu_extension" + suffix + ".so"); // built as loadable module
|
|
candidates.push_back("libcpu_extension" + suffix + ".dylib"); // built as shared library
|
|
#else
|
|
candidates.push_back("libcpu_extension" + suffix + ".so");
|
|
#endif // _WIN32
|
|
}
|
|
for (auto &&extlib : candidates)
|
|
{
|
|
try
|
|
{
|
|
this_plugin.AddExtension(IE::make_so_pointer<IE::IExtension>(extlib));
|
|
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << extlib);
|
|
break;
|
|
}
|
|
catch(...)
|
|
{
|
|
CV_LOG_WARNING(NULL, "Failed to load IE extension " << extlib);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto this_network = this_plugin.LoadNetwork(net, {}); // FIXME: 2nd parameter to be
|
|
// configurable via the API
|
|
auto this_request = this_network.CreateInferRequest();
|
|
|
|
// Bind const data to infer request
|
|
for (auto &&p : params.const_inputs) {
|
|
// FIXME: SetBlob is known to be inefficient,
|
|
// it is worth to make a customizable "initializer" and pass the
|
|
// cv::Mat-wrapped blob there to support IE's optimal "GetBlob idiom"
|
|
// Still, constant data is to set only once.
|
|
this_request.SetBlob(p.first, wrapIE(p.second.first, p.second.second));
|
|
}
|
|
|
|
return {this_plugin, this_network, this_request};
|
|
}
|
|
};
|
|
|
|
struct IECallContext
|
|
{
|
|
// Input parameters passed to an inference operation.
|
|
std::vector<cv::GArg> args;
|
|
|
|
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
|
|
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
|
|
//once on enter for input and output arguments, and once before return for output arguments only
|
|
//FIXME: check if the above applies to this backend (taken from CPU)
|
|
std::unordered_map<std::size_t, cv::GRunArgP> results;
|
|
|
|
// Generic accessor API
|
|
template<typename T>
|
|
const T& inArg(std::size_t input) { return args.at(input).get<T>(); }
|
|
|
|
// Syntax sugar
|
|
const cv::gapi::own::Mat& inMat(std::size_t input) {
|
|
return inArg<cv::gapi::own::Mat>(input);
|
|
}
|
|
cv::gapi::own::Mat& outMatR(std::size_t output) {
|
|
return *cv::util::get<cv::gapi::own::Mat*>(results.at(output));
|
|
}
|
|
|
|
template<typename T> std::vector<T>& outVecR(std::size_t output) { // FIXME: the same issue
|
|
return outVecRef(output).wref<T>();
|
|
}
|
|
cv::detail::VectorRef& outVecRef(std::size_t output) {
|
|
return cv::util::get<cv::detail::VectorRef>(results.at(output));
|
|
}
|
|
};
|
|
|
|
struct IECallable {
|
|
static const char *name() { return "IERequestCallable"; }
|
|
// FIXME: Make IECallContext manage them all? (3->1)
|
|
using Run = std::function<void(cv::gimpl::ie::IECompiled &, const IEUnit &, IECallContext &)>;
|
|
Run run;
|
|
};
|
|
|
|
struct KImpl {
|
|
cv::gimpl::CustomMetaFunction::CM customMetaFunc;
|
|
IECallable::Run run;
|
|
};
|
|
|
|
// FIXME: Is there a way to take a typed graph (our GModel),
|
|
// and create a new typed graph _ATOP_ of that (by extending with a couple of
|
|
// new types?).
|
|
// Alternatively, is there a way to compose types graphs?
|
|
//
|
|
// If not, we need to introduce that!
|
|
using GIEModel = ade::TypedGraph
|
|
< cv::gimpl::Protocol
|
|
, cv::gimpl::Op
|
|
, cv::gimpl::NetworkParams
|
|
, cv::gimpl::CustomMetaFunction
|
|
, IEUnit
|
|
, IECallable
|
|
>;
|
|
|
|
// FIXME: Same issue with Typed and ConstTyped
|
|
using GConstGIEModel = ade::ConstTypedGraph
|
|
< cv::gimpl::Protocol
|
|
, cv::gimpl::Op
|
|
, cv::gimpl::NetworkParams
|
|
, cv::gimpl::CustomMetaFunction
|
|
, IEUnit
|
|
, IECallable
|
|
>;
|
|
} // anonymous namespace
|
|
|
|
// GCPUExcecutable implementation //////////////////////////////////////////////
|
|
cv::gimpl::ie::GIEExecutable::GIEExecutable(const ade::Graph &g,
|
|
const std::vector<ade::NodeHandle> &nodes)
|
|
: m_g(g), m_gm(m_g) {
|
|
// FIXME: Currently this backend is capable to run a single inference node only.
|
|
// Need to extend our island fusion with merge/not-to-merge decision making parametrization
|
|
GConstGIEModel iem(g);
|
|
|
|
for (auto &nh : nodes) {
|
|
switch (m_gm.metadata(nh).get<NodeType>().t) {
|
|
case NodeType::OP:
|
|
if (this_nh == nullptr) {
|
|
this_nh = nh;
|
|
this_iec = iem.metadata(this_nh).get<IEUnit>().compile();
|
|
}
|
|
else
|
|
util::throw_error(std::logic_error("Multi-node inference is not supported!"));
|
|
break;
|
|
|
|
case NodeType::DATA: {
|
|
m_dataNodes.push_back(nh);
|
|
const auto &desc = m_gm.metadata(nh).get<Data>();
|
|
if (desc.storage == Data::Storage::CONST_VAL) {
|
|
util::throw_error(std::logic_error("No const data please!"));
|
|
}
|
|
if (desc.storage == Data::Storage::INTERNAL) {
|
|
util::throw_error(std::logic_error("No internal data please!"));
|
|
}
|
|
break;
|
|
}
|
|
default: util::throw_error(std::logic_error("Unsupported NodeType type"));
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Document what it does
|
|
cv::GArg cv::gimpl::ie::GIEExecutable::packArg(const cv::GArg &arg) {
|
|
// No API placeholders allowed at this point
|
|
// FIXME: this check has to be done somewhere in compilation stage.
|
|
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
|
|
&& arg.kind != cv::detail::ArgKind::GSCALAR
|
|
&& arg.kind != cv::detail::ArgKind::GARRAY);
|
|
|
|
if (arg.kind != cv::detail::ArgKind::GOBJREF) {
|
|
util::throw_error(std::logic_error("Inference supports G-types ONLY!"));
|
|
}
|
|
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
|
|
|
|
// Wrap associated CPU object (either host or an internal one)
|
|
// FIXME: object can be moved out!!! GExecutor faced that.
|
|
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
|
|
switch (ref.shape)
|
|
{
|
|
case GShape::GMAT: return GArg(m_res.slot<cv::gapi::own::Mat>()[ref.id]);
|
|
|
|
// Note: .at() is intentional for GArray as object MUST be already there
|
|
// (and constructed by either bindIn/Out or resetInternal)
|
|
case GShape::GARRAY: return GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
|
|
|
|
default:
|
|
util::throw_error(std::logic_error("Unsupported GShape type"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void cv::gimpl::ie::GIEExecutable::run(std::vector<InObj> &&input_objs,
|
|
std::vector<OutObj> &&output_objs) {
|
|
// Update resources with run-time information - what this Island
|
|
// has received from user (or from another Island, or mix...)
|
|
// FIXME: Check input/output objects against GIsland protocol
|
|
|
|
for (auto& it : input_objs) magazine::bindInArg (m_res, it.first, it.second);
|
|
for (auto& it : output_objs) magazine::bindOutArg(m_res, it.first, it.second);
|
|
|
|
// FIXME: Running just a single node now.
|
|
// Not sure if need to support many of them, though
|
|
// FIXME: Make this island-unmergeable?
|
|
const auto &op = m_gm.metadata(this_nh).get<Op>();
|
|
|
|
// Initialize kernel's execution context:
|
|
// - Input parameters
|
|
IECallContext context;
|
|
context.args.reserve(op.args.size());
|
|
using namespace std::placeholders;
|
|
ade::util::transform(op.args,
|
|
std::back_inserter(context.args),
|
|
std::bind(&GIEExecutable::packArg, this, _1));
|
|
|
|
// - Output parameters.
|
|
for (const auto &out_it : ade::util::indexed(op.outs)) {
|
|
// FIXME: Can the same GArg type resolution mechanism be reused here?
|
|
const auto out_port = ade::util::index(out_it);
|
|
const auto out_desc = ade::util::value(out_it);
|
|
context.results[out_port] = magazine::getObjPtr(m_res, out_desc);
|
|
}
|
|
|
|
// And now trigger the execution
|
|
GConstGIEModel giem(m_g);
|
|
const auto &uu = giem.metadata(this_nh).get<IEUnit>();
|
|
const auto &kk = giem.metadata(this_nh).get<IECallable>();
|
|
kk.run(this_iec, uu, context);
|
|
|
|
for (auto &it : output_objs) magazine::writeBack(m_res, it.first, it.second);
|
|
}
|
|
|
|
namespace cv {
|
|
namespace gimpl {
|
|
namespace ie {
|
|
|
|
struct Infer: public cv::detail::KernelTag {
|
|
using API = cv::GInferBase;
|
|
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
|
|
static KImpl kernel() { return KImpl{outMeta, run}; }
|
|
|
|
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
|
const ade::NodeHandle &nh,
|
|
const cv::GMetaArgs &in_metas,
|
|
const cv::GArgs &/*in_args*/) {
|
|
// Specify network's output layer metadata to the framework
|
|
// Also specify the input information to the IE from the framework
|
|
// NB: Have no clue if network's input [dimensions] may ever define
|
|
// its output dimensions. It seems possible with OpenCV DNN APIs
|
|
|
|
cv::GMetaArgs result;
|
|
|
|
GConstGIEModel gm(gr);
|
|
const auto &uu = gm.metadata(nh).get<IEUnit>();
|
|
|
|
// Initialize input information
|
|
// Note our input layers list order matches the API order and so
|
|
// meta order.
|
|
GAPI_Assert(uu.params.input_names.size() == in_metas.size()
|
|
&& "Known input layers count doesn't match input meta count");
|
|
|
|
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
|
|
ade::util::toRange(in_metas))) {
|
|
auto &&ii = uu.inputs.at(std::get<0>(it));
|
|
const auto & mm = std::get<1>(it);
|
|
|
|
GAPI_Assert(util::holds_alternative<cv::GMatDesc>(mm)
|
|
&& "Non-GMat inputs are not supported");
|
|
|
|
const auto &meta = util::get<cv::GMatDesc>(mm);
|
|
ii->setPrecision(toIE(meta.depth));
|
|
ii->setLayout(meta.isND() ? IE::Layout::NCHW : IE::Layout::NHWC);
|
|
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
|
}
|
|
|
|
// FIXME: It would be nice here to have an exact number of network's
|
|
// input/output parameters. Probably GCall should store it here for us.
|
|
// It doesn't, as far as I know..
|
|
for (const auto &out_name : uu.params.output_names) {
|
|
// NOTE: our output_names vector follows the API order
|
|
// of this operation's outputs
|
|
const IE::DataPtr& ie_out = uu.outputs.at(out_name);
|
|
const IE::SizeVector dims = ie_out->getTensorDesc().getDims();
|
|
|
|
cv::GMatDesc outm(toCV(ie_out->getPrecision()),
|
|
toCV(ie_out->getTensorDesc().getDims()));
|
|
result.emplace_back(outm);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void run(IECompiled &iec, const IEUnit &uu, IECallContext &ctx) {
|
|
// non-generic version for now:
|
|
// - assumes all inputs/outputs are always Mats
|
|
for (auto i : ade::util::iota(uu.params.num_in)) {
|
|
// TODO: Ideally we shouldn't do SetBlob() but GetBlob() instead,
|
|
// and redirect our data producers to this memory
|
|
// (A memory dialog comes to the picture again)
|
|
|
|
const cv::Mat this_mat = to_ocv(ctx.inMat(i));
|
|
// FIXME: By default here we trait our inputs as images.
|
|
// May be we need to make some more intelligence here about it
|
|
IE::Blob::Ptr this_blob = wrapIE(this_mat, cv::gapi::ie::TraitAs::IMAGE);
|
|
iec.this_request.SetBlob(uu.params.input_names[i], this_blob);
|
|
}
|
|
iec.this_request.Infer();
|
|
for (auto i : ade::util::iota(uu.params.num_out)) {
|
|
// TODO: Think on avoiding copying here.
|
|
// Either we should ask IE to use our memory (what is not always the
|
|
// best policy) or use IE-allocated buffer inside (and pass it to the graph).
|
|
// Not a <very> big deal for classifiers and detectors,
|
|
// but may be critical to segmentation.
|
|
|
|
cv::gapi::own::Mat& out_mat = ctx.outMatR(i);
|
|
IE::Blob::Ptr this_blob = iec.this_request.GetBlob(uu.params.output_names[i]);
|
|
copyFromIE(this_blob, out_mat);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct InferList: public cv::detail::KernelTag {
|
|
using API = cv::GInferListBase;
|
|
static cv::gapi::GBackend backend() { return cv::gapi::ie::backend(); }
|
|
static KImpl kernel() { return KImpl{outMeta, run}; }
|
|
|
|
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
|
const ade::NodeHandle &nh,
|
|
const cv::GMetaArgs &in_metas,
|
|
const cv::GArgs &/*in_args*/) {
|
|
// Specify the input information to the IE from the framework
|
|
// NB: Have no clue if network's input [dimensions] may ever define
|
|
// its output dimensions. It seems possible with OpenCV DNN APIs
|
|
|
|
GConstGIEModel gm(gr);
|
|
const auto &uu = gm.metadata(nh).get<IEUnit>();
|
|
|
|
// Initialize input information
|
|
// Note our input layers list order matches the API order and so
|
|
// meta order.
|
|
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
|
|
&& "Known input layers count doesn't match input meta count");
|
|
|
|
std::size_t idx = 1u;
|
|
for (auto &&input_name : uu.params.input_names) {
|
|
auto &&ii = uu.inputs.at(input_name);
|
|
const auto & mm = in_metas[idx++];
|
|
|
|
GAPI_Assert(util::holds_alternative<cv::GMatDesc>(mm)
|
|
&& "Non-GMat inputs are not supported");
|
|
|
|
const auto &meta = util::get<cv::GMatDesc>(mm);
|
|
ii->setPrecision(toIE(meta.depth));
|
|
ii->setLayout(meta.isND() ? IE::Layout::NCHW : IE::Layout::NHWC);
|
|
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
|
|
}
|
|
|
|
// roi-list version is much easier at the moment.
|
|
// All our outputs are vectors which don't have
|
|
// metadata at the moment - so just create a vector of
|
|
// "empty" array metadatas of the required size.
|
|
return cv::GMetaArgs(uu.params.output_names.size(),
|
|
cv::GMetaArg{cv::empty_array_desc()});
|
|
}
|
|
|
|
static void run(IECompiled &iec, const IEUnit &uu, IECallContext &ctx) {
|
|
// non-generic version for now:
|
|
// - assumes zero input is always ROI list
|
|
// - assumes all inputs/outputs are always Mats
|
|
GAPI_Assert(uu.params.num_in == 1); // roi list is not counted in net's inputs
|
|
|
|
const auto& in_roi_vec = ctx.inArg<cv::detail::VectorRef>(0u).rref<cv::Rect>();
|
|
const cv::Mat this_mat = to_ocv(ctx.inMat(1u));
|
|
// Since we do a ROI list inference, always assume our input buffer is image
|
|
IE::Blob::Ptr this_blob = wrapIE(this_mat, cv::gapi::ie::TraitAs::IMAGE);
|
|
|
|
// FIXME: This could be done ONCE at graph compile stage!
|
|
std::vector< std::vector<int> > cached_dims(uu.params.num_out);
|
|
for (auto i : ade::util::iota(uu.params.num_out)) {
|
|
const IE::DataPtr& ie_out = uu.outputs.at(uu.params.output_names[i]);
|
|
cached_dims[i] = toCV(ie_out->getTensorDesc().getDims());
|
|
ctx.outVecR<cv::Mat>(i).clear();
|
|
// FIXME: Isn't this should be done automatically
|
|
// by some resetInternalData(), etc? (Probably at the GExecutor level)
|
|
}
|
|
|
|
for (const auto &rc : in_roi_vec) {
|
|
// FIXME: Assumed only 1 input
|
|
IE::Blob::Ptr roi_blob = IE::make_shared_blob(this_blob, toIE(rc));
|
|
iec.this_request.SetBlob(uu.params.input_names[0u], roi_blob);
|
|
iec.this_request.Infer();
|
|
|
|
// While input is fixed to be 1,
|
|
// there may be still multiple outputs
|
|
for (auto i : ade::util::iota(uu.params.num_out)) {
|
|
std::vector<cv::Mat> &out_vec = ctx.outVecR<cv::Mat>(i);
|
|
|
|
IE::Blob::Ptr out_blob = iec.this_request.GetBlob(uu.params.output_names[i]);
|
|
|
|
cv::Mat out_mat(cached_dims[i], toCV(out_blob->getTensorDesc().getPrecision()));
|
|
copyFromIE(out_blob, out_mat); // FIXME: Avoid data copy. Not sure if it is possible though
|
|
out_vec.push_back(std::move(out_mat));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace ie
|
|
} // namespace gapi
|
|
} // namespace cv
|
|
|
|
|
|
// IE backend implementation of GBackend::Priv ///////////////////////
|
|
namespace {
|
|
class GIEBackendImpl final: public cv::gapi::GBackend::Priv {
|
|
virtual void unpackKernel(ade::Graph &gr,
|
|
const ade::NodeHandle &nh,
|
|
const cv::GKernelImpl &ii) override {
|
|
using namespace cv::gimpl;
|
|
// FIXME: Introduce a DNNBackend interface which'd specify
|
|
// the framework for this???
|
|
GIEModel gm(gr);
|
|
const auto &np = gm.metadata(nh).get<NetworkParams>();
|
|
const auto &pp = cv::util::any_cast<cv::gapi::ie::detail::ParamDesc>(np.opaque);
|
|
const auto &ki = cv::util::any_cast<KImpl>(ii.opaque);
|
|
gm.metadata(nh).set(IEUnit{pp});
|
|
gm.metadata(nh).set(IECallable{ki.run});
|
|
gm.metadata(nh).set(CustomMetaFunction{ki.customMetaFunc});
|
|
}
|
|
|
|
virtual EPtr compile(const ade::Graph &graph,
|
|
const cv::GCompileArgs &,
|
|
const std::vector<ade::NodeHandle> &nodes) const override {
|
|
return EPtr{new cv::gimpl::ie::GIEExecutable(graph, nodes)};
|
|
}
|
|
|
|
virtual cv::gapi::GKernelPackage auxiliaryKernels() const override {
|
|
return cv::gapi::kernels< cv::gimpl::ie::Infer
|
|
, cv::gimpl::ie::InferList
|
|
>();
|
|
}
|
|
};
|
|
}
|
|
|
|
cv::gapi::GBackend cv::gapi::ie::backend() {
|
|
static cv::gapi::GBackend this_backend(std::make_shared<GIEBackendImpl>());
|
|
return this_backend;
|
|
}
|
|
|
|
cv::Mat cv::gapi::ie::util::to_ocv(InferenceEngine::Blob::Ptr blob) {
|
|
const auto& tdesc = blob->getTensorDesc();
|
|
return cv::Mat(toCV(tdesc.getDims()),
|
|
toCV(tdesc.getPrecision()),
|
|
blob->buffer().as<uint8_t*>());
|
|
}
|
|
|
|
std::vector<int> cv::gapi::ie::util::to_ocv(const InferenceEngine::SizeVector &dims) {
|
|
return toCV(dims);
|
|
}
|
|
|
|
InferenceEngine::Blob::Ptr cv::gapi::ie::util::to_ie(cv::Mat &blob) {
|
|
return wrapIE(blob, cv::gapi::ie::TraitAs::IMAGE);
|
|
}
|
|
|
|
#else // HAVE_INF_ENGINE
|
|
|
|
cv::gapi::GBackend cv::gapi::ie::backend() {
|
|
// Still provide this symbol to avoid linking issues
|
|
util::throw_error(std::runtime_error("G-API has been compiled without OpenVINO IE support"));
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|